Skip to main content
Log in

A conceptual model of mildly alkaline water discharging from the Zlatibor ultramafic massif, western Serbia

Un modèle conceptuel d’eau moyennement alcaline du massif ultramafique de Zlatibor, Ouest de la Serbie

Un modelo conceptual de agua levemente alcalina que descarga desde el macizo ultramáfico de Zlatibor, en el oeste de Serbia

Um modelo conceptual da descarga de água moderadamente alcalina do maciço ultramáfico de Zlatibor, Sérvia ocidental

Концептуальная модель слабощелочных вод, изливающих из ультрамафитног комплекса в горном массиве Златибор в западной Сербии

Концептуални модел благо алкалних вода које истичу из ултрамафитског масива Златибора, западна Србија

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Ultramafic rocks are generally taken to be ‘waterless’ or bearing little water. The mountain Zlatibor, western Serbia, largely built of Upper Jurassic ultramafics, is without perennial springs. However, in Gruda, an area on the NE side of Zlatibor, there are two perennial ascending springs with uniform discharge: Bijela Česma and Hajdučko Vrelo. The water from both springs is naturally mildly alkaline (pH ∼8.4), of Mg–HCO3 type, and temperature ∼11 °C. The springs have been investigated with respect to derivation, dynamics and chemistry with a view to commercial use of the water. The results indicate zones of rocks fractured during tectonic events and/or under lithostatic pressure. Deep ultramafic rocks, equivalent to abyssal peridotites (the least depleted rocks of the upper mantle, rich in magnesium), include fractured aquifers characterized by heterogeneity and anisotropy. Groundwater arriving at the land surface derives from atmospheric precipitation, and its quality is converted through the process of serpentine acid hydrolysis into mildly alkaline Mg–HCO3 water. Both quantity and quality of water from these springs are stable and are unaffected by atmospheric precipitation or other external influences. A conceptual model of the structure, hydrogeological character of the aquifer, and the mechanism of groundwater derivation is developed for both springs.

Résumé

Les roches ultramafiques sont généralement considérées comme « sans eau » ou peu aquifères. La montagne Zlatibor, Ouest de la Serbie, largement constituée d’ultramafites du Jurassique supérieur, ne présente pas de source pérenne. Toutefois, dans le Gruda, une région du flanc NE du Zlatibor, on trouve deux émergences ascendantes pérennes à débit constant : Bijela Česma et Hajdučko Vrelo. L’eau des deux sources est naturellement moyennement alcaline (pH ∼8.4), de type bicarbonatée magnésienne et à température ∼11 °C. Elles ont été étudiées relativement à leur dérivation, aux plans dynamique et chimique, en vue d’une utilisation commerciale de l’eau. Les résultats indiquent des zones de roches fracturées durant des épisodes tectoniques et/ou sous pression lithostatique. Les roches ultramafiques profondes, équivalentes aux péridotites abyssales les roches les moins appauvries du manteau supérieur, riches en magnésium, contiennent des aquifères hétérogènes et anisotropes. L’eau souterraine arrivant à la surface du sol provient des précipitations atmosphériques et sa qualité est convertie, par le processus d’hydrolyse acide de la serpentine, en eau bicarbonatée magnésienne moyennement alcaline. Le débit et la qualité de l’eau de ces sources sont tous deux stables et non affectés par les précipitations atmosphériques ou autres facteurs externes. Un modèle conceptuel de la structure, des caractéristiques hydrogéologiques de l’aquifère et du mécanisme de dérivation de l’eau souterraine est développé pour les deux sources.

Resumen

Las rocas ultramáficas son generalmente aceptadas como “carentes de agua” o que tienen poca cantidad de agua. La montaña Zlatibor, en el oeste de Serbia, en gran parte formada sobre rocas ultramáficas del Jurásico Superior, carece de manantiales perennes. Sin embargo, en Gruda, un área de la ladera NE de Zlatibor, hay dos manantiales ascendentes perennes con descarga uniforme: Bijela Česma y Hajdučko Vrelo. El agua de ambos manantiales es naturalmente levemente alcalina (pH ∼8.4), de tipo Mg–HCO3, y temperatura de ∼11 °C. Se investigaron los manantiales en relación con la derivación, dinámica y química con una visión para uso comercial del agua. Los resultados indican zonas de rocas fracturadas durante eventos tectónicos y/o bajo presión litostática. Las rocas ultramáficas profundas, equivalentes a peridotitas abisales (las rocas menos agotadas del manto superior, ricas en magnesio), incluyen acuíferos fracturados caracterizados por su heterogeneidad y anisotropía. El agua subterránea que llega a la superficie del terreno proviene de la precipitación atmosférica, y su calidad es convertida en agua Mg–HCO3 levemente alcalina a través de los procesos de hidrólisis ácida de la serpentina. Tanto la cantidad como la calidad del agua de estos manantiales son estables y no serían afectados por la precipitación atmosférica u otras influencias externas. Se desarrolló un modelo conceptual de la estructura, carácter hidrogeológico del acuífero, y el mecanismo de derivación de agua subterránea para ambos manantiales.

Resumo

As rochas ultramáficas são geralmente consideradas ‘sem água’ ou contendo quantidades muito reduzidas de água. A montanha de Zlatibor, na Sérvia ocidental, em grande parte constituída por rochas ultramáficas do Jurássico Superior, não contém nascentes perenes. No entanto, em Gruda, uma área do lado nordeste de Zlatibor, existem duas nascentes perenes com descarga uniforme: Bijela Česma e Hajdučko Vrelo. A água de ambas as nascentes é naturalmente alcalina moderada (pH ∼8.4), do tipo Mg–HCO3, e com temperatura ∼11 °C. As nascentes têm sido investigadas quanto à proveniência, dinâmica e química com vista à comercialização da água. Os resultados indicam zonas de rochas fraturadas durante eventos tectónicos e/ou sob pressão litostática. As rochas ultramáficas profundas, equivalentes a peridotitos abissais (as rochas menos empobrecidas do manto superior, ricas em magnésio), incluem aquíferos fraturados caracterizados por heterogeneidade e anisotropia. As águas subterrâneas que chegam à superfície são provenientes da precipitação atmosférica e a sua composição é alterada para água do tipo Mg–HCO3 moderadamente alcalina através do processo da hidrólise ácida da serpentina. Tanto a quantidade como a qualidade da água destas nascentes são estáveis, não sendo afetadas pela precipitação atmosférica ou outras influências externas. Para ambas as nascentes são desenvolvidos modelos conceptuais da estrutura e das características hidrogeológicas do aquífero, bem como do mecanismo de proveniência da água subterrânea.

Аннотация

Ультрамафические породы, как правило, принято считать «безводными» или содержащими небольшое количество воды. Гора Златибор в западной Сербии состоящая из ультрамафических горных пород с редкими постоянными источниками. Тем не менее, на территории Груда, находящегося в северо восточной части горы Златибор, есть два постоянных акцидентных источника с одинаковым дебитом: Биэла Чесма и Хайдучко Врело. Вода в обоих источниках слабощелочная (рН ∼8.4), Mg–HCO3 группы с температурой ∼11 °C. Происхождение, механизм излияния и химический состав воды в этих источниках исследован для коммерческого использования воды. Полученные результаты свидетельствуют о существовании относительно глубокой зоны трещеноватых пород, происхождение которых связано с тектоническими движениями или с литостатическим давлением. Глубоко расположенные ультрамафические породы эквивалентны абиссальным перидотитам (меньше всего обедненные породы верхнего слоя, богатые магнием), содержат водоносные горизонты типа трещинные воды зон тектонических нарушених характеризуется неоднородностью и анизотропией с точки зрения водоносности. Пополнение грунтовых вод происходит путем инфильтрации атмосферных осадков. Порцессом кислотного гидролиза серпентинита изменяется химический состав грунтовых вод и они появляются на поверхности в виде слабощелочной Mg–HCO3 группы воды. И качество и количество воды постоянно и не зависит от количества осадков и других внешних воздействий. Концептуальная модель структуры, гидрогеологические свойства водоносных пород и механизам излияния подземных вод представлен для обоих источников.

Апстракт

Ултрамафитске стене су генерално прихваћене као "безводне" или са малом количином воде. Планина Златибор у западној Србији, претежно изграђена од горњојурских ултрамафита, је са ретким сталним изворима. Међутим, на простору Груда, подручју на СИ планине Златибор, постоје два стална асцедентна извора уједначене издашности: Бијела Чесма и Хајдучко Врело. Вода у оба извора је благо алкална (pH ∼8.4), Mg–HCO3 типа, температуре ∼11 °C. Порекло, механизам истицања и хемијски састав вода у овим изворима је испитиван за потребе комерцијалне употребе вода. Резултати су указали на постојање релативно дубоких зона са стенама које су испуцале било услед тектонских покрета или услед литостатичког притиска. Дубоке ултрамафитске стене, еквивалентне абисалним перидотитима (најмање осиромашене стене горњег омотача, богате магнезијумом), садрже издани пукотинског типа које се одликују хетерогеношћу и анизотропијом у погледу водоносности. Подземне воде су пореклом од атмосферских падавина. Процесом киселе хидролизе серпентина мења се хемијски карактер подземних вода и појављују се на површину терена као благо алкалне Mg–HCO3 типа воде. И квалитет и квантитет ових вода је стабилан и не зависи од количине падавина или било којих других спољних утицаја. Концептуални модел структуре, хидрогеолошких својстава водоносних стена и механизам истицања подземних вода је дат за оба извора.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbot RD, Ando F, Masaki KH, Rung KH, Rodriguez BL, Petrovitch H, Yano K, Curb JD (2003) Dietary magnesium intake and the future risk of coronary heart disease (the Honolulu Heart Program). Am J Cardiol 92:665–669

    Article  Google Scholar 

  • Anderson TW, Neri LC, Schreiber GB, Talbot FD, Zdrojewski A (1975) Letter: Ischemic heart disease, water hardness and myocardial magnesium. Can. Med. Assoc. J. 113(3):199–203

    Google Scholar 

  • Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25

    Google Scholar 

  • Aubouin J, Blanchet R, Cadet JP, Celet P, Charvet J, Chorowicz J, Cousin J, Rampnoux J (1970) Essay on the geology of the Dinarides (in French). Bull Soc Geol France 7(12):1060–1095

    Google Scholar 

  • Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinisation, western United States. Geol Soc Am Bull 80:1947–1960

    Article  Google Scholar 

  • Barnes I, LaMarche VC Jr, Himmelberg G (1967) Geochemical evidence of present-day serpentinization. Science 156:830–832

    Article  Google Scholar 

  • Barnes I, O’Neil JR, Trescases JJ (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42:144–145

    Article  Google Scholar 

  • Bortolotti V, Kodra A, Marroni M, Mustafa F, Pandolfi L, Principi G, Saccani E (1996) Geology and petrology of ophiolitic sequences in the Mirdita region (northern Albania). Ofioliti 21(1):3–20

    Google Scholar 

  • Carswell DA (1980) Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: a review. Lithos 13(2):121–138

    Article  Google Scholar 

  • Cipolli F, Gambardella B, Marini L, Ottonello G, Zuccolini MV (2004) Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modelling of CO2 sequestration in serpentinite aquifers. Appl Geoch 19:787–802

    Article  Google Scholar 

  • Colin N, Stanger G (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. Mineral Mag 48:237–241

    Article  Google Scholar 

  • Colin N, Shand P (2002) Spring and surface water quality of the Cyprus ophiolites. HESS 6(5):797–817

    Google Scholar 

  • Đerković B (1973) A new type of strongly hydroxide-sodium-calcium water at Kulaši (Bosnia) Yugoslavia. Bull Sci Acad Sci Arts Yugoslavia Sect A 18(7–9):134–135

    Google Scholar 

  • Dewandel B, Lachassagne P, Boudier F, Al-Hattali S, Ladouche B, Pinault JL, Al-Suleimani Z (2005) A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach. Hydrogeol J 13(5–6):708–726

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Wyns R, Marechal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromium spinel as petrogenetic indicator in abyssal and alpine type peridotites, and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dimitrijević MD (1982) Dinarides: an outline of tectonics. Earth Evol. Sci. 1:4–23

    Google Scholar 

  • European Commission (2003) Commission Directive 2003/40/EC of 16 May 2003. Off J Eur Union L126:0034–0039

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Hey MH (1954) A new review of chlorites. Mineral Mag 30:277–292

    Article  Google Scholar 

  • Karamata S (2004) Balkan Peninsula: a complex geological framework. In: Chatzipetros AA, Pavlides SB (eds) 5th International Symposium on Eastern Mediterranean Geology, 1. Thessaloniki, Greece, April 2004, pp 389–391

    Google Scholar 

  • Karamata S (2006) The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwanan and Eurasian units. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the Eastern Mediterranean region. Geol Soc Lond Spec Publ, London 260:155–178

    Google Scholar 

  • Keppie JD, Dallmayer RD (1990) Introduction to the terrane analysis and the tectonic map of pre-Mesozoic terranes in Circum-Atlantic Phanerozoic orogens. Abstr IGCP Meetings 233:24

    Google Scholar 

  • Klevay LM, Milne DB (2002) Low dietary magnesium increases supraventicular ectopy. Am J Clin Nutr 75:550–554

    Google Scholar 

  • Korikovsky SP, Popević A, Karamata S, Kurdyukov E (2000) Prograde metamorphic transformations of mafic rocks in the contact aureole beneath the Zlatibor ultramafic massif. In: Karamata S, Janković S (eds) Geology and metallogeny of the dinarides and the vardar zone. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Serbia, pp 161–170

  • Kousa A, Moltchanova E, Viik-Kajander M, Rytkonen M, Tuomilehto J, Tarvainen T, Karvonen M (2004) Geochemistry of groundwater and the incidence of acute myocardial infraction in Finland. J Epidemiol Community Health 58:136–139

    Article  Google Scholar 

  • Krešić N, Papić P (1990) Specific chemical composition of karst groundwater in the Ophiolite Belt of the Yugoslav inner Dinarides: a case of covered karst. Environ Geol Water Sci 15(2):131–135

    Article  Google Scholar 

  • Lachassagne P, Ahmed SH, Dewandel B, Courtois N, Marechal JC, Perrin J, Wyns R (2009) Recent improvements in the conceptual model of hard rock aquifers and its application to the survey, management, modelling and protection of groundwater. Proceedings of the Kampala Conference, Uganda, 24–28 June 2008: Groundwater and Climate in Africa. IAHS Publ. 334, IAHS, Wallingford, UK

  • Leblanc M (1987) Chromite in oceanic arc environments: New Caledonia. In: Stowe CW (ed) Evolution of chromium ore fields. Reinhold, New York, pp 265–297

    Google Scholar 

  • Lever AF, Beretta-Picoli C, Brown JJ, Davies DL, Fraser R, Robertson JI (1981) Sodium and potassium in essential hypertension. Br Med J (Clin Res Ed) 283(6289):463–468

    Article  Google Scholar 

  • Loke MH (2003) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Penang, Malaysia

    Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosection using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • McMillan G (1978) Distribution of trace elements related to certain cancers cardiovascular diseases and urolithiasis. Geochem Environ 3:114–132

    Google Scholar 

  • Milovanović B, Mladenović M (1966/67) On some results of geophysical and geological research in the ophiolite zone of the inner Dinarides (in Serbian with a French summary). Bull Geol Geophys Res A:24–25, 7–23

    Google Scholar 

  • Mojsilović S, Bakleić D, Đoković I (1977) Base geological map of SFRY at scale 1:100,000. Titovo Užice sheet and textual explanation of the map (in Serbian with English summary). Federal Geological Survey, Belgrade

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg V, Ross M, Seifert FA, Zussman L, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • O’Shaughnessy KM, Karet FE (2004) Salt handling and hypertension. J Clin Invest 113(8):1075–1081. doi:10.1172/JCI200421560

    Google Scholar 

  • Robertson A, Karamata S, Šarić K (2009) Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos 108:1–36

    Article  Google Scholar 

  • Schmid MS, Bernoulli D, Fugenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alps–Carpathians–Dinarides connection: a correlation of tectonic units. Swiss J. Geosci. 101(1):139–183

    Article  Google Scholar 

  • Simkin T, Smith JV (1970) Minor-element distribution in olivine. J Geol 78:304–325

    Article  Google Scholar 

  • Stanger G (1986) The hydrogeology of the Oman Mountains. PhD Thesis, The Open University, Milton Keynes, UK, vol 1, 355 pp; vol 2, 324 pp

  • USEPA, Office of Water (2003) Drinking water advisory: consumer acceptability and health effects analysis on sodium. USEPA, Washington, DC

Download references

Acknowledgements

This work was carried out under the Project OI 176018, granted and funded by the Ministry of Science and Technological Development of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Nikić.

Appendix

Appendix

Table 2 Results of complete water quality analyses for the springs Bijela Česma and Hajdučko Vrelo discharging from ultramafic rocks of Gruda

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikić, Z., Srećković-Batoćanin, D., Burazer, M. et al. A conceptual model of mildly alkaline water discharging from the Zlatibor ultramafic massif, western Serbia. Hydrogeol J 21, 1147–1163 (2013). https://doi.org/10.1007/s10040-013-0983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0983-2

Keywords

Navigation