Skip to main content
Log in

A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Ophiolites are found all over the world: from the Alps to the Himalayas, in Cuba, Papua-New Guinea, New Caledonia, Newfoundland, etc. They are composed of hard rocks—basalt, dolerite, gabbro and peridotite, which are formed at the mid-oceanic ridges, with specific ridge-related tectonic fracturing and intense hydrothermal alteration. Their geological and thus their hydrogeological properties differ from those of both granite or “classical” gabbro and “classical” basaltic lava. A conceptual hydrogeological model of these hard-rock aquifers was developed based on the convergent results of a multidisciplinary approach at several spatial scales, from rock-sample (centimetre) to catchment (kilometre), on well-preserved ophiolite rocks in Oman. In ophiolite rocks, groundwater circulation takes place mostly in the fissured near-surface horizon (≈50 m thick), and, to a lesser degree, in the tectonic fractures. Hydrograph analysis (Water Resour Res 34:233–240, 1977), interpretation of numerous pumping tests using both classical Theis and dual porosity models [Water Resour Res 32:2733–2745, 1996; Comput Geosci J (in press)], and mercury porosity and hydraulic conductivity lab-measurements support the aquifer parameter estimates. The hydraulic conductivity K of the fissured horizon is estimated at 10−5 to 10−6 m/s for gabbro and dolerite, and 10−7 m/s for peridotite. The storage coefficient S of the peridotite aquifer is estimated at 10−3 and appears to be controlled mainly by microcracks (20 to 100 μm wide). Tectonic fractures in the ophiolite have similar hydrodynamic properties regardless of lithology (10−1<T<10−4 m2/s and 10−1<S<10−3) though the probability of obtaining productive wells is two to three times greater in gabbro and dolerite than in peridotite. Some of the tectonic fractures produce small hydrothermal, hyperalkaline springs in the peridotite. The water budget and hydrochemistry of the Oman ophiolite are characterized and support the conceptual hydrogeological model. Despite low annual rainfall, a relatively low hydraulic conductivity and a significant storage coefficient explain why most of the streams in peridotite are perennial.

Resumen

Las rocas ofiolitas se encuentran en muchas partes del mundo desde los Alpes a los Himilaya, Newfoundland, Nueva Caledonia etc. Son rocas duras compuestas de basalto, dolerita, gabro y peridotita que son formadas por los cordones medio-oceánicos y por fracturación relacionada con los cordones tectónicos específicos y alteración hidrotermal intensa. La geología y los propiedades hidrogeológicas varian entre las de granito y gabro “clásico” y lava de basalto “clásico”. Se desarrolló un modelo conceptual de los acuíferos de las rocas duras Basado en los resultados convergentes de un enfoce multidisciplinario a varias escalas a partir de muestras de roca (centímetro) a cuenca kilómetro) enfocado en las rocas ofilíticas bien preservados en Oman. En las rocas ofiolíticas la circulación de agua ocurre principalmente en el horizonte de fisuras cercanas a la superficie (>50 m de espesor) y en un grado menos importante en fracturas tectónicas. Los estimados de los parámetros de estos acuíferos se basan en análisis de hidrógrafos (Water Resour Res 34:233–240, 1977), en la interpretación de pruebas de bombeo usando los modelos clásicos de Theis y de porosidad doble (Hamm y Bidaux 1996; Lods y Gouze, [en prensa]), y porosidad de mecurio y conductividad hidraúlica medida en el laboratorio. La conductividad hidraúlica K del horizonte fisurado se estima en 10E-5 a 10E-6 m-s para gabro y dolerita y 10E-7 para peridotita. El coeficiente de abastecimiento S del acuífero peridotita se estima en 10–3 y parece ser controlado principalmente por microfracturas (20 to 100 μm de ancho). Las fracturas tectónicas en la ofiolita tienen propiedades hidrodinámicas similares independientes de la litología (10–1<T<10–4 m2/s and 10–1<S<10–3) pero la probabilidad de obtener pozos productivos es dos o tres veces mayor en gabro que en dolerita o peridotita. Algunas de las fracturas tectónicas producen pequeñas descargas de agua hidrotermal hiperalcalina en la peridotita. El presupuesto e hidroquímica de las ofilitas de Omán se caracteriza y apoya en el modelo conceptual hidrogeológico. La baja lluvia anual, una conductividad hidraúlica relativamente baja y un coeficiente de abastecimiento importante explican porqué la mejoría de los drenajes en peridotita es peremne.

Résumé

Les ophiolites se trouvent partout dans le monde : des Alpes à l’Hymalaya, à Cuba, Papouasie Nouvelle-Guinée, Nouvelle Calédonie, etc. Les ophiolites sont composées de roches dures basaltiques, de dolérites, gabbros et péridotites, qui sont formées aux rides mi-océaniques, avec, en relation avec les rides, une fracturation tectonique et une altération hydrothermale intense. Leurs propriétés géologiques et hydrogéologiques diffèrent de celles des granites ou des gabbros “classiques” ou des laves basaltiques “classiques”. Un modèle hydrogéologique conceptuel des aquifères de hard-rock a été développé sur les résultats convergents d’une approche multidisciplinaire à différentes échelles spatiales, de l’échantillon de roche de quelques centimètres à la taille du bassin versant en kilomètres, des ophiolites bien conservées d’Oman. Dans les roches ophiolitiques, la circulation des eaux souterraines est surtout localisée dans les fissures d’un horizon de surface de plus d’une cinquantaine de mètres et à un degré moindre dans les fractures tectoniques. L’analyse des hydrographes (Water Resour Res 34:233–240, 1977), l’interprétation des nombreux essais de pompage utilisant des modèles classiques de Theis et des modèles à double porosité (Water Resour Res 32:2733–2745, 1996; Comput Geosci J (Soumis), la porosité au mercure et la conductivité hydraulique calculée en laboratoire supportent l’estimation des paramètres de l’aquifère. La conductivité hydraulique K de l’horizon fissuré est estimée entre 10−5 et 10−6 m/s pour les gabbros et les dolérites, et 10−7 m/s pour les péridotites. Le coefficient d’emmagasinement S de l’aquifère de péridotite est estimé à 10−3 et semble être contrôlé par les micro-fractures (20 à 100 μm de largeur). Les fractures tectoniques dans les ophiolites possèdent des propriétés hydrodynamiques en regard de la lithologie (10-1<T<10-4 m2/s et 10-1/S/10-3) bien que la probabilité d’obtenir des puits productifs est trois plus grand dans le grabbro et la dolérite que la péridétite. Quelques unes des fractures tectoniques produisent de petites sources hydrothermales hyperalcalines dans la péridotite. Le bilan hydrologique et hydrochimique de l’ophiolite d’Oman caractérise le modèle hydrogéologique conceptuel. Malgré des faibles précipitations annuelles, une relativement basse conductivité hydraulique et un coefficient d’emmagasinement significatif expliquent pourquoi la plus part des cours d’eau sur les péridotites ne sont jamais taris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbate E, Bortolli V, Passerini P, Prinicipi G (1985) The rhythm of phanerozoeic ophiolites. Ophiolitio 10:109–138

    Google Scholar 

  • Alfidaa A (1989) Hydrogéologie des roches basiques et ultrabasiques fissurées du Nord Ouest de la Syrie (Hydrogeology of basic and ultrabasic rocks of northwestern Syria). PhD thesis, University of Grenoble I, France

  • Aphrodisis S, Besognnet P, Pointet T (1983) Etude statistique de 270 forages dans les roches ignées du massif du Troodos (Chypre) (Statistical study of 270 borewells drilled in the igneous rocks of Troodos massif (Cyrus)), BRGM Report No RR-19592-FR, Orléans

  • Athavale RN, Rangarajan R (1988) Natural recharge measurements in the hard rock regions of semi-arid India using tritium injection—A review. In: I.S.S.C.M.a.P.S.V. NATO ASI Series (Ed.), Estimation of Natural Ground water Recharge

  • Bailey EH, Coleman RG, Gregory RT, Hopson CA, Pallister JS (1981) Geologic Map of Muscat-Ibra area, Sultanate of Oman. J Geol Res 86(B4), Sultanate of Oman

  • Balas B, Al-Lawati EAM, Wahby H, Al-Guaiti I (1997) Amélioration de l’irrigation: le cas du palmier dattier dans la région intérieure d’Oman [Irrigation improvement: the case of the palm trees in central Oman]. Nouvelles Scientiques de France et du Proche Orient, Nov. 1997, 53–58

  • Banks D, Odling NE, Skarphagen H, Rohr-Torp E (1996) Permeability and stress in crystalline rocks. Terra Nova 1996(8):223–235

    Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804

    Google Scholar 

  • Besognet P (1985) Productivité des forages d’eau et caractères physiques du milieu [Productivity of borewell for water supply and physical parameters]. BRGM Report No RR-18597, Orléans, France

  • Boronina A, Renard P, Balderer W, Christodoulides A (2003) Groundwater resources in the Kouris catchment (Cyprus): data analysis and numerical modelling. J Hydrol 271:130–149

    Article  CAS  Google Scholar 

  • Bousquié P (1979) Texture et porosité des roches calcaires. Relations avec la perméabilité, l’ascension capillaire, la gélivité et la conductivité thermique [Texture and porosity of limestones. Relationship between the hydraulic conductivity, the capillarity, the gelivity and the thermic conductivity. PhD thesis, University of Paris VI

  • Boussinesq J (1903) Sur un mode simple d’écoulement des nappes d’eau d’infiltration à lit horizontal, avec rebord vertical tout autour, lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond [Groudwater flow within an aquifer limited by a horizontal impermeable layer, with a vertical no-flow boundary around, when one of then is removed]. C R Acad Sci Paris 137:5–11

    Google Scholar 

  • Bradbury KR, Muldoon MA (1994) Effects of fracture density and anisotropy on delineation of well-head-protection areas in fractured-rock aquifers. Appl Hydrogeol 2(3):17–23

    Article  Google Scholar 

  • Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 34:233–240

    Article  Google Scholar 

  • Burke JJ (1995) Hydrogeological provinces in Central Sudan: morphostructural and hydrogeomorphological controls. In: Geomorphology and groundwater: B. AG. Wiley, New York pp 177–208

    Google Scholar 

  • Chilton PJ, Foster SSD (1995) Hydrogeological characteristics and water-supply potential of basement aquifers in Tropical Africa. Hydrogeol J 3(1):3–49

    Article  Google Scholar 

  • Corbonnois J, François D, Arts M, Sary M, Gille E, Gamez P, Devos A, Decloux J-P (1998) Répartition des écoulements en basses eaux. Aspects méthodologiques [Distribution of baseflow. Methodological aspects]. Comité National Français de Géodésie et Géophysique, 4-Yearly Report 1995–1998

  • Cruz JV, Silva MO (2001) Hydrogeologic framework of Pico Island, Azores, Portugal. Hydrogeol J 9(2):177–189

    Article  Google Scholar 

  • Custodio E (1975) Hydrogeologia de las rocas volcanicas [Hydrogeology of volcanic rocks]. 3rd UNESCO-ESA-IHA Symposium on Groundwater, 23–69

  • Custodio E (1978) Geohidrologia de terrenos e islas volcanicas [Hydrogeology in volcanic island]. Ed.: Instituto de Hidrologia. Centro de Estudios Hidrographicos. 1 vol., 303 p

  • Davis SN, Turk LJ (1964) Optimum depth of wells in crystalline rocks. Ground Water 2(2):6–11

    Google Scholar 

  • Delwyn SO, Souza WR, Bolke EL, Bauer GR (1998) Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA. Hydrogeol J 6(2):243–263

    Article  Google Scholar 

  • Deolankar SB (1980) The Deccan basalts of Maharashtra, India. Their potential as aquifers. Ground Water 18(5):434–437

    Google Scholar 

  • Detay M, Poyet P, Emsellem Y, Bernardi A, Aubrac G (1989) Development of the saprolite reservoir and its state of saturation: influence on the hydrodynamic characteristics of drillings in crystalline basement (in French). C R Acad Sci Paris Sér II t 309:429–436

    Google Scholar 

  • De Vries JJ, Von Hoyer M (1988) Ground water recharge studies in semi-arid Botswana—A review. In: I.S.S.C.M.a.P.S.V. NATO ASI Series (Ed.), Estimation of Natural Ground water Recharge, 339–347

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Article  Google Scholar 

  • Dewandel B (2002) Structure et fonctionnement hydrogéologique d’un aquifère discontinu: l’ophiolite d’Oman [Structure and functioning of a hard-rock aquifer: the Oman ophiolite]. Ph.D. thesis, University of Montpellier II, France, 650 p

  • Dewandel B, Boudier F, Lachassagne P, Al-Khamisi S, Al-Hattaly S (2000) Les eaux souterraines de l’ophiolite d’Oman. Propriétés aquifères. [The groundwater of Oman ophiolite. Aquifer properties]. Nouvelles Scientiques de France et du Proche-Orient, August 2000, 27–33

  • Dewandel B, Al-Khamisi S, Lachassagne P, Boudier F (2001) Hydrogeological properties of the Oman ophiolite. Abstract in International Conference on “Geology of Oman”, Muscat, 16–21 January 2001

  • Dewandel B, Boudier F, Kern H, Warsi WK, Mainprice D (2003a) Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite. Tectonophysics 370:77–94

    CAS  Google Scholar 

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003b) Evaluation of aquifer thickness using recession hydrographs analysis. Application to the Oman ophiolite, hard rock aquifer. J Hydrol 274:248–269

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Qatan A (in press) Dilution gauging: a simple, light and efficient technique for stream gauging, by measuring only water conductivity. Water Res (in press)

  • Dewandel B, Lachassagne P, Qatan A (2004) Spatial measurements of stream baseflow a relevant methodology for aquifer characterization and permeability evaluation. Application to a hard-rock aquifer, the Oman ophiolite. Hydrol Process 18:3391–3400

    Article  Google Scholar 

  • Gale JE, Rouleau A, Witherspoon PA (1982) Hydrogeologic characteristics of a fractured granite. Groundwater in Fractured Rock Conference, 95–108. Canberra: Australian Water Resources Council

  • Gburek WJ, Folmar GJ, Urban JB (1999) Field Data and Ground Water Modeling in a Layered Fractured Aquifer. Ground Water 37(2):175–184

    CAS  Google Scholar 

  • Glennie KW, Bœuf MGA, Hughes Clark MW, Moody-Stuart M, Pilaar WFH, Reinhardt BME (1974) Geology of the Oman Mountains. Verh. Kon. Ned. Geol. Minjnb. Gen., Delft, Netherlands

    Google Scholar 

  • Greenbaum D (1992) Structural influences on the occurence of groundwater in SE Zimbabwe. In: E. P. a. B. Wright EG (ed), Hydrogeology of Crystalline Basement Aquifers in Africa: vol. 66. Geological Society Special Publication, London, pp 77–85

    Google Scholar 

  • Gustafson G, Krasny J (1994) Crystalline rock aquifers: their occurence, use and importance. Appl Hydrogeol 2(2):64–75

    Article  Google Scholar 

  • Hahn J, Lee Y, Kim N, Hahn C, Lee S (1997) The groundwater resource and sustainable yield of Cheju volcanic island, Korea. Environ Geol 33:43–53

    CAS  Google Scholar 

  • Hamm SY, Bidaux P (1996) Dual-porosity fractal models for transient flow analysis in fissured rocks. Water Resour Res 32:2733–2745

    Article  Google Scholar 

  • Himanshu K, Deolankar SB, Lalwani A, Bijoy J, Pawar S (2000) Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeol J 8:368–378

    Article  Google Scholar 

  • Hopson CA, Coleman RG, Gregory RT, Pallister JS, Bailey EH (1981) Geologic section trough the Samail Ophiolite and associated rocks along a Muscat-Ibra transect, Southeastern Oman montains. J Geophys Res 86(B4):2527–2544

    CAS  Google Scholar 

  • Houston J (1988) Rainfall-Runoff-Recharge relationships in the basement rocks of Zimbabwe. In: I.S.S.C.M.a.P.S.V. NATO ASI Series (Ed.), Estimation of Natural Ground water Recharge, 349–365

  • Houston JFT, Lewis RT (1988) The Victoria Province drought relief project, II. Borehole yield relationships. Ground Water 26(4):418–426

    Google Scholar 

  • Howard KWF, Hughes M, Charlesworth DL, Ngobi G (1992) Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Hydrogeol J 1:55–65

    Article  Google Scholar 

  • Ildefonse B, Pezard P, Mainprice D, Wilcock WSD,Toomey DR, Constable S (2001) Can we distinguish between serpentinised peridotites and gabbros from their physical properties? Insights from the GEOman experiment. Conference EUGXI 2001 Strasbourg

  • Josnin JY (2002) The role of unsaturated zone flow from strombolian cone on storage calculation for basaltic aquifers (a case study in Massif Central, France). EGS XXVII General Assembly, Nice, France

    Google Scholar 

  • Kitching R, Edmunds WM, Shearer TM, Walton NRG Jacovides J (1980) Assessment to recharge to aquifers. Hydrol Sci-Bull Sci Hydrol 25(3/9):217–235

    Google Scholar 

  • Kitterod NO, Colleuille H, Wong WK, Pedersen TS (2000) Simulation of groundwater drainage into a tunnel in fractured rock and numerical analysis of leakage remediation, Romeriksporten tunnel, Norway. Hydrogeol J 8:480–493

    Article  Google Scholar 

  • Kulkarni H, Lalwani A, Deolankar SB (1997) Selection of appropriate pumping systems for borewells in the Deccan basalt, India. Hydrogeol J 5(3):75–81

    Article  Google Scholar 

  • Lachassagne P, Wyns R, Bérard P, Bruel T, Chéry L, Coutand T, Desprats J-F, Le Strat P (2001) Exploitation of high-yield in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water 39(4):568–581

    CAS  PubMed  Google Scholar 

  • Leornardi V, Arthaud F, Grillot JC, Avetissian V, Bochnaghian P (1996) Modelling of a fractured basaltic aquifer with respect to geological setting, and climatic and hydraulic conditions: the case of perched basalts at Garni (Armenia). J Hydrol 179:87–109

    Article  Google Scholar 

  • Lippard SJ, Shelton AW, Gass IE (1986) The ophiolite of Northern Oman, Mem. 11. Geol. Soc. London, London, 178 pp

    Google Scholar 

  • Lods G, Gouze P (2004) WTFM, software for Well Test analysis in Fractured Media combining fractional flow with double porosity and leakance approaches. Comput Geosci J 30:937–947

    Article  Google Scholar 

  • Mabee SB (1999) Factors influencing well productivity in glaciated metamorphic rocks, Georgetown, Maine. Ground Water 37(1):88–97

    CAS  Google Scholar 

  • Mabee SB, Hardcastle KC (1997) Analysing outcrop-scale fracture features to supplement investigations of bedrock aquifers. Hydrogeol J 5(3):82–88

    Article  Google Scholar 

  • Magowe M, Carr JR (1999) Relationships between lineaments and groundwater occurence in western Botswana. Ground Water 37(2):282–286

    CAS  Google Scholar 

  • Manning CE (1999) Permability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150

    Article  Google Scholar 

  • Manning CE, MacLeod CJ, Weston PE (2000) Lower-crustal cracking front at fast-spreading ridges: Evidence from the East Pacific Rise and the Oman ophiolite. Geol Soc Am (Special Paper) 349:261–272

    Google Scholar 

  • Maréchal J-C, Perrochet P, Tacher L (1999) Long term simulation of thermal and hydraulic characteristics in a mountain massif: the Mont-Blanc case study, French and Italien Alps. Hydrogeol J 7:341–354

    Article  Google Scholar 

  • Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40:W11508, 1–17

    Article  Google Scholar 

  • McFarlane MJ, Chilton PJ, Lewis MA (1992). Geomorphological controls on borehole yields; a statistical study in an area of basement rocks in Central Malawi. In: E. P. a. B. Wright EG (ed) Hydrogeology of crystalline basement aquifers in Africa: vol. 66. Geological Society Special Publication, London, pp 131–154

    Google Scholar 

  • Moench AF (1984) Double porosity models for a fissured groundwater reservoir with fracture skin. Water Resour Res 20(7):831–846

    Google Scholar 

  • M.P.M. (1993) Geological Map of Oman 1:1000000. Ministry of Petroleum and Minerals, Sultanate of Oman

    Google Scholar 

  • M.W.R. (1997) Samail Project, hydrogeology of Wadi Samail upper catchment. Surface and Ground water Department, Ministry of Water Resources, Sultanate of Oman

    Google Scholar 

  • M.W.R. (1998) Wadi al Batha Project, water resources of the Ibra zone. Surface and Ground water Department, Ministry of Water Resources, Sultanate of Oman

    Google Scholar 

  • Nicolas A (1989) Structure of ophiolites and dynamics of oceanic lithosphere. Petrol Struct Geol

  • Nicolas A, Boudier F, Ildefonse B (1996) Variable crustal thickness in the Oman ophiolite- Implication for oceanic ridges. J Geophys Res 101:17941–17950

    Article  Google Scholar 

  • Nicolas A, Boudier F, Ildefonse B, Ball E (2000a) Accretion of Oman and United Emirates ophiolite - Discussion of a new structural map. Mar Geophys Res 21:147–179

    Article  Google Scholar 

  • Nicolas A, Ildefonse B, Boudier F, Lenoir X, Ben Ismail W (2000b) Dike distribution in the Oman-United Arab Emirates ophiolite. Mar Geophys Res 21:269–287

    Article  Google Scholar 

  • Nicolas A, Mainprice D, Boudier F, (in press) High-temperature seawater circulation throughout crust of oceanic ridges. A model derived from the Oman ophiolite. J Geophys Res (in press)

  • Ophori DU (1999) Constraining permeabilities in a large-scale ground water system through model calibration. J Hydrol 224:1–20

    CAS  Google Scholar 

  • Peters TJ, Nicolas A Coleman RG (1990) Ophiolite genesis and evolution of the oceanic lithosphere. Proc. of the Ophiolite Conference, Muscat (Oman), 7–18 Jan. 1990, Petrol. and Struct. Geol., vol. 5. Kuwer Acad., Norwell, Mass pp 903

    Google Scholar 

  • Peterson FL (1972) Water development on tropic volcanic islands. Type example: Hawaii. Ground Water 10(5):18–23

    Google Scholar 

  • Pinault JL, Pauwels H, Cann C (2001a) Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: Application to nitrate transport and denitrification. Water Resour Res 37:2179–2190

    CAS  Google Scholar 

  • Pinault JL, Plagnes V, Aquilina L, Bakalowicz M (2001b) Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: Characterization of karst system functioning. Water Resour Res 37:2191–2204

    Article  Google Scholar 

  • Polubarinova-Kochina PY (1962) Theory of Ground water Movement. Princeton University Press

    Google Scholar 

  • Ravaut P (1992) Le levé gravimétrique de la chaîne omanaise : contribution à l’étude des mécanismes de compensation [Gravimetry of the Oman mountain, contribution to the mechanism of compensation]. DEA University of Montpellier II, Montpellier

    Google Scholar 

  • Robineau B, Ritz M, Courteau M, Descloitre M (1997) Electromagnetic investigations of aquifers in the Grand-Brûlé coastal area of Piton de la Fournaise Volcano, Réunion island. Ground Water 35(4):585–592

    CAS  Google Scholar 

  • Sander P (1997) Water-well siting in hard-rock areas: identifying promising targets using a probabilistic approach. Hydrogeol J 5(3):32–43

    Article  Google Scholar 

  • Sander P, Minor TB, Chesley MM (1997) Ground-water exploration based on lineament analysis and reproducibility tests. Ground Water 35(5):888–894

    CAS  Google Scholar 

  • Stanger G (1987) The hydrogeology of the Oman mountains. Ph.D Thesis, Department of Earth Sciences, The Open University, U.K., 355 p

  • Taylor R, Howard K (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8(3):279–294

    Article  Google Scholar 

  • Taylor KC, Minor TB, Chesley MM, Matanawi K (1999) Cost effectiveness of well site selection methods in a fractured aquifer. Ground Water 37(2):271–274

    CAS  Google Scholar 

  • Van der Sommen JJ, Geirnaert W (1988) On the continuity of aquifer systems on the crystalline basement of Burkina Faso. In: I.S.S.C.M.a.P.S.V. NATO ASI Series (Ed.), Estimation of Natural Ground water Recharge, 29–45

  • Violette S, Ledoux E, Goblet P, Carbonnel J-P (1997) Hydrologic and thermal modeling of an active volcano: the Piton de la Fournaise, Réunion. J Hydrol 191:37–63

    Article  Google Scholar 

  • Wahbi H, Al-Lawati E (1997) Irrigation for date palms in the Sultanate of Oman. The Third Gulf Water Conference, Muscat, Sultanate of Oman

    Google Scholar 

  • Weyhenmeyer CE, Burns SJ, Waber HN, Macumber PG, Matter A (2002) Isotope study of moisture sources, recharge areas, and groundwater flow paths within the easthern Bathinah coastal plain, Sultanate of Oman. Water Resour Res 38(10):1184, pp 1–22

    Article  Google Scholar 

  • Wise DU (1982) Linesmanship and the practice of linear geo-art. Geol Soc Am Bull 93:886–888

    Article  Google Scholar 

  • Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa. In: E. P. a. B. Wright EG (ed) Hydrogeology of crystalline basement aquifers in Africa: vol. 66. Geological Society Special Publication, London, pp 1–27

    Google Scholar 

  • Wyns R (1991) Use of continental paleosurfaces for thematic probability mapping (in French). Géol Fr 3:3–9

    Google Scholar 

  • Wyns R, Baltassat JM, Lachassagne P, Legtchenko A, Vairon J, Mathieu F (2004) Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bull Soc Géol Fr t.175(1):21–34

    Google Scholar 

  • Yin Z-Y, Brook GA (1992) The topographic approach to locating high yield wells in crystalline rocks: does it work? Ground Water 30(1):96–101

    Google Scholar 

Download references

Acknowledgements

This study was conducted as part of a scientific and technical cooperative project between the Water Department of BRGM (French Geological Survey), the University of Montpellier II’s Tectono-Physics Laboratory, the Ministry of Water Resources of the Sultanate of Oman (M.W.R.) and CNRS (Centre National de la Recherche Scientifique). It benefited from M.W.R. logistics support and the financial support of the Région Languedoc-Roussillon, BRGM and the French Ministry of Foreign Affairs. Sincere thanks are expressed to G. Lods for his advice on the interpretation of dual-porosity pumping-test results and to M. Bakalowicz for the time spent in kindly “pre”-reviewing this paper. Dr. P. Olcott (Managing Editor of HJ), Dr. John Tellam (Associate Editor of HJ) and the two reviewers of the Journal, Dr. P. John Chilton and Dr. Richard Taylor are thanked for their fruitful comments and suggestions. The BRGM Translation Service translated and edited this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Dewandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewandel, B., Lachassagne, P., Boudier, F. et al. A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach. Hydrogeol J 13, 708–726 (2005). https://doi.org/10.1007/s10040-005-0449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0449-2

Keywords

Navigation