Skip to main content
Log in

Dynamical arching in a two dimensional granular flow

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A study of grains flow in a two dimensional hopper using particle tracking and photoelastic methods is presented in this article. An intermittent network of contact forces consisting of force chains and arches is observed. This network is responsible for fluctuations in the average vertical velocity. The magnitude of these fluctuations depends on the hopper’s geometry, and it quickly reduces for large aperture size and small inclination angles. The average velocity field is described using a combination of harmonic angular functions and a power law of radial position. The mass flow rate is determined through the average velocity field and a Beverloo type scaling is obtained. We found that the effect of the inclination angle on the mass flow rate is given by \({\alpha/ \,(\sin\alpha)^{3/2}}\) . It is also found that the critical aperture size, approaching jamming, depends linearly on \({\sin\alpha}\) . At small D/d, the time average of the network of contact forces shows a boundary with characteristics resembling the free fall arch. We show that an arch can be built following the principal compression orientation of the stress tensor which captures the characteristics of the arches observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger H.M., Nagel S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  ADS  Google Scholar 

  2. Umbanhowar P.B., Melo F., Swinney H.L.: Localized excitations in a vertical vibrated granular layer. Nature 382, 793–796 (1996)

    Article  ADS  Google Scholar 

  3. Aranson I.S., Tsimring L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  4. Ehrichs E.E., Jaeger H.M., Karczmar G.S., Knight J.B., Kuperman V.Y., Nagel S.R.: Granular convection observed observed by magnetic resonance imaging. Science 267, 1632–1634 (1995)

    Article  ADS  Google Scholar 

  5. Adrian D.: Dynamical equilibrium of avalanches on a rough plane. Phys. Fluids 13, 2115–2124 (2001)

    Article  Google Scholar 

  6. Howell D., Behringer R.P., Veje C.: Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    Article  ADS  Google Scholar 

  7. Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)

    Article  Google Scholar 

  9. Choi J., Kudrolli A., Bazant M.: Velocity profile of granular flows inside silos and hoppers. J. Phys. Condens. Matter 17, S2533–S2548 (2005)

    Article  ADS  Google Scholar 

  10. Bagnold R.A.: Experiment on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  11. Jenike A.W.: Gravity Flow of Bulk Solids. University of Utah Press, Salt Lake City (1961)

    Google Scholar 

  12. Jenike A.W.: Storage and Flow of Solids. University of Utah Press, Lake City (1964)

    Google Scholar 

  13. Behringer R.P.: The dynamics of flowing sand. Nonlinear Sci. Today 3, 1–15 (1993)

    Article  Google Scholar 

  14. Nedderman R.M.: Static and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  15. Drescher A., Waters A.J., Rhoades C.A.: Arching in hoppers: I. Arching theories and critical outlet size. Powder Technol. 84, 165–176 (1995)

    Article  Google Scholar 

  16. Drescher A., Waters A.J., Rhoades C.A.: Arching in hoppers: II. Arching theories and critical outlet size. Powder Technol. 84, 177–183 (1995)

    Article  Google Scholar 

  17. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  18. Majmudar T.S., Sperl M., Luding S., Behringer R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)

    Article  ADS  Google Scholar 

  19. Zandman, F., Redner, S., Dally, J.W.: Photoelastic Coatings, SESA Monograph No 3. Science Press (1977)

  20. Sharpe, W. (ed.): Springer Handbook of Experimental Solid Mechanics, pp. 701–742. Spinger Science+Business Media, LLC New York (2008)

  21. Gåsvik K.: Optical Metrology. 3rd edn. Wiley, West Sussex (2002)

    Book  Google Scholar 

  22. Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming Transition in Granular Systems. EPAPS Document No. E-PRLTAO-98-020705 at http://www.aip.org/pubservs/epaps.html

  23. Longhi E., Nalini E., Menon N.: Large force fluctuations in a flowing granular medium. Phys. Rev. Lett. 89, 045501 (2002)

    Article  ADS  Google Scholar 

  24. To K., Lai P.-Y., Pak H.K.: Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71 (2000)

    Article  ADS  Google Scholar 

  25. Edwards S.F., Mounfield C.C.: A theoretical model for the stress distribution in a granular matter. I. Basic equation. Phys. A 226, 1–11 (1996)

    MathSciNet  Google Scholar 

  26. Edwards F.S., Mounfield C.C.: A theoretical model for the stress distribution in a granular matter. III. Forces in sandpiles. Phys. A 226, 25–33 (1996)

    Article  MathSciNet  Google Scholar 

  27. Mounfield C.C., Edwards F.S.: A theoretical model for the stress distribution in a granular matter. II. Forces in pipes. Phys. A 226, 12–24 (1996)

    Article  MathSciNet  Google Scholar 

  28. Brown R.L., Richards J.C.: Profile of flow of granules through apertures. Trans. Inst. Chem. Eng. 38, 243–256 (1960)

    Google Scholar 

  29. Rose H.F., Tanaka T.: Rate of discharge of granular materials from bins and hoppers. Eng. (London) 208, 465 (1959)

    Google Scholar 

  30. Nedderman R.M., Tüzün U., Savage S.B., Houlsby G.T.: The flow of granular material I: discharge rates from hoppers. J. Chem. Eng. Sci. 37, 1597–1609 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Vivanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivanco, F., Rica, S. & Melo, F. Dynamical arching in a two dimensional granular flow. Granular Matter 14, 563–576 (2012). https://doi.org/10.1007/s10035-012-0359-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0359-7

Keywords

Navigation