Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2179 Accesses

Abstract

Sand flowing through the constriction of an hourglass or jumping on a vibrating plate is fluidized in the sense that it moves analogously to a fluid. Dense flows of grains driven by gravity down inclines occur in nature and in industrial processes. Natural examples include rock avalanches and landslides. Applications are found in the chemical, pharmaceutical and petroleum industry. Grain flow can be modeled as a fluid-mechanical phenomenon. However, granular fluids teach us about an astounding complexity that emerges from simple, macroscopic particles. For example, starting from an homogenous fluidized system, structures evolve and a dilute granular fluid co-exists with much denser solid-like clusters. Another example is the so-called Brazil nut effect, whereby larger and heavier particles placed into an agitated granular bed rise to the top. We present an outlook of the hydrodynamic description of granular materials. Our purpose is to outline a theory of grain flow which is based upon the description of continuous matter fields derived from the kinetic theory for dense gases, as is usually encountered in fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The “sand laptop”: He has even said to have carried a small wooden tray filled with sand, which he used to draw his figures and work on his mathematical problems. This tray would have been Archimedes’ version of the modern lap top computer.

References

  • Alam M, Luding S (2002) How good is the equipartition assumption for the transport properties of a granular mixture? Granul Matter 4:139–142

    Article  Google Scholar 

  • Alam M, Luding S (2003) Rheology of bidisperse granular mixtures via event-drivent simulations. J Fluid Mech 476:69–103

    Article  Google Scholar 

  • Arnarson BÖ, Willits JT (1998) Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys Fluids 10:1324–1328

    Google Scholar 

  • Alam M, Trujillo L, Herrmann HJ (2006) Hydrodynamic theory for reverse Brazil nut segregation and the non-monotonic ascension dynamics. J Stat Phys 124:587623

    Article  Google Scholar 

  • Alam M, Willits JT, Arnarson BÖ, Luding S (2002) Kinetic theory of a binary mixture of neraly elastic disks with size and mass disparity. Phys Fluids 14:4085–4087

    Google Scholar 

  • Arnarson BÖ, Jenkins JT (2000) Particle segregation in the context of the species momentum balances. In: Helbing D, Herrmann HJ, Schreckenberg M, Wolf DE (eds) Traffic and granular flow’99: social, traffic and granular dynamics. Springer, Berlin, pp 481–487

    Google Scholar 

  • Arnarson BÖ, Jenkins JT (2004) Binary mixtures of inelastic spheres: simplified constitutive theory. Phys Fluids 16:4543–4550

    Google Scholar 

  • Boudet JF, Amarouchene Y, Bonnier B, Kellay H (2007) The granular jump. J Fluid Mech 572:413–431

    Article  Google Scholar 

  • Brey JJ, Dufty JW, Kim CS, Santos A (1998) Hydrodynamics for granular flow at low density. Phys Rev E 58:4638–4653

    Article  CAS  Google Scholar 

  • Brey JJ, Ruiz-Montero MJ, Moreno F (2001) Hydrodynamics of an open vibrated granular system. Phys Rev E 63:061306

    Article  Google Scholar 

  • Brilliantov NV, Pöschel T (2004) Kinetic theory of granular gases. Oxford University Press, Oxford

    Book  Google Scholar 

  • Caballero G, Bergmann R, van der Meer D, Prosperetti A, Lohse D (2007) Role of air in granular jet formation. Phys Rev Lett 99:018001

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards SF, Oakeshott RBS (1989) Theory of powders. Physica A 157:1080–1090

    Article  Google Scholar 

  • Eshuis P, van der Weele K, van der Meer D, Lohse D (2005) Granular Leidenfrost effect: experiment and theory of floating particle clusters. Phys Rev Lett 95:258001

    Article  Google Scholar 

  • Eshuis P, van der Meer D, Alam M, van Gerner HJ, van der Weeke K, Lohse D (2010) Onset of convection in strongly shaken granular matter. Phys Rev Lett 104:038001

    Article  Google Scholar 

  • Feitosa K, Menon N (2002) Breakdown of energy equipartition in a 2D binary vibrated granular gas. Physical Review Letters 88:198301

    Article  Google Scholar 

  • Gallas JAC, Herrmann HJ, Sokołowski S (1992) Convection cells in vibrating granular media. Phys Rev Lett 69:1371–1373

    Article  Google Scholar 

  • García-Colín LS, Velasco RM, Uribe FJ (2008) Beyond the Navier-Stokes equations: Burnett hydrodynamics. Phys Rep 465:149–189

    Article  Google Scholar 

  • Garzó V (2008) Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid. Phys Rev E 78:020301

    Article  Google Scholar 

  • Garzó V, Dufty JW (1999) Dense fluid transport for inelastic hard spheres. Phys Rev E 59:5895–5911

    Article  Google Scholar 

  • Garzó V, Dufty JW, Hrenya CM (2007) Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys Rev E 76:031303

    Google Scholar 

  • Garzó V, Dufty JW, Hrenya CM (2007) Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys Rev E 76:031304

    Google Scholar 

  • Garzó V, Vega-Reyes F, Montanero JM (2009) Modified Sonine approximation for granular binary mixtures. J Fluid Mech 623:387–411

    Article  Google Scholar 

  • Hong DC, Hayakawa H (1997) Thermodynamic theory of weakly excited granular systems. Phys Rev Lett 78:2764–2767

    Article  Google Scholar 

  • Hayakawa H, Yue S, Hong DC (1995) Hydrodynamic description of granular convection. Phys Rev Lett 75:2328–2331

    Article  CAS  Google Scholar 

  • Henrique C, Batrouni G, Bideau D (2000) Diffusion as a mixing mechanism in granular materials. Phys Rev E 63:011304

    Article  Google Scholar 

  • Herrmann HJ (1993) On the thermodynamics of granular media. J de Physique II (France) 3:427–433

    Article  CAS  Google Scholar 

  • Hong DC, Quinn PV, Luding S (2001) Reverse Brazil nut problem: competition between percolation and condensation. Phys Rev Lett 86:3423–3426

    Article  CAS  Google Scholar 

  • Huerta DA, Sosa V, Vargas MC, Ruiz-Suárez JC (2005) Archimedes’ principle in fluidized granular systems. Phys Rev E 72:031307

    Article  CAS  Google Scholar 

  • Ippolito I, Annic A, Lemaître J, Oger L, Bideau D (1995) Granular temperature: experimental analysis. Phys Rev E 52:2072–2075

    Article  CAS  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    Article  Google Scholar 

  • Jenkins JT (1998) Particle segregation in collisional flows of inelastic spheres. In: Herrmann HJ, Holvi J-P, Luding S (eds) Physics of dry granular media. Kluwer, Dordrecht, p 658

    Google Scholar 

  • Jenkins JT, Mancini F (1987) Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J Appl Mech 54:27–34

    Article  CAS  Google Scholar 

  • Jenkins JT, Mancini F (1989) Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys Fluids A 1:2050–2057

    Article  CAS  Google Scholar 

  • Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 130:187–202

    Article  Google Scholar 

  • Jenkins JT, Yoon DK (2002) Segregation in binary mixtures under gravity. Phys Rev Lett 88:194301

    Article  CAS  Google Scholar 

  • Jiang L, Liu M (2009) Granular solid hydrodynamics. Granul Matter 11:139–156

    Article  Google Scholar 

  • Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys 71:435–444

    Article  Google Scholar 

  • Knight JB, Ehrichs EE, Kuperman V, Flint JK, Jaeger HM, Nagel SR (1996) Experimental study of granular convection. Phys Rev E 54:5726–5738

    Article  CAS  Google Scholar 

  • Leidenfrost JG (1966) On the fixation of water in diverse fire. Int J Heat Mass Transf 9:1153–1166

    Article  CAS  Google Scholar 

  • Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele K, van der Hoef M, Kuipers H (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93:198003

    Article  Google Scholar 

  • Lohse D, Rauhé R, Bergmann R, van der Meer D (2004) Creating a dry variety of quicksand. Nature 432:689–690

    Article  CAS  Google Scholar 

  • López de Haro M, Cohen EGD, Kincaid JM (1983) The Enskog theory for multicomponent mixtures. I Linear transport theory. J Chem Phys 78:2746–2759

    Article  Google Scholar 

  • Maes C, Thomas SR (2011) Archimedes’ law and its corrections for an active particle in a granular sea. J Phys A Math Theor 44:285001

    Article  Google Scholar 

  • McNamara S, Luding S (1998) Energy non-equipartition in systems of inelastic, rough spheres. Phys Rev E 58:2247

    Article  CAS  Google Scholar 

  • Möbius ME, Lauderdale BE, Nagel SR, Jaeger HM (2001) Size separation of granular particles. Nature 414:270

    Article  Google Scholar 

  • Schöter M, Ulrich S, Kreft J, Swift JB, Swinney HL (2006) Mechanisms in the size segregation of a binary granular mixture. Phys Rev E 74:011307

    Article  Google Scholar 

  • Serero D, Goldhirsch I, Noskowicz SH, Tan M-L (2008) Hydrodynamics of granular gases and granular mixtures. J Fluid Mech 554:237–258

    Article  Google Scholar 

  • Serero D, Noskowicz SH, Goldhirsch I (2007) Exact results versus mean field solutions for binary granular gas mixtures. Granul Matter 10:37–46

    Article  Google Scholar 

  • Shinbrot T, Muzzio FJ (1998) Reverse buoyancy in shaken granular beds. Phys Rev Lett 81:4365–4368

    Article  CAS  Google Scholar 

  • Trujillo L, Alam M, Herrmann HJ (2003) Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Europhys Lett 64:190–196

    Article  CAS  Google Scholar 

  • Trujillo L, Herrmann HJ (2003) Hydrodynamic model for particle size segregation in granular media. Physica A 330:519–542

    Article  Google Scholar 

  • Wildman RD, Parker DJ (2002) Coexistence of two granular temperatures in binary vibrofluidized beds. Phys Rev Lett 88:064301

    Article  CAS  Google Scholar 

  • Willits JT, Arnarson BÖ (1999) Kinetic theory of a binary mixture of nearly elastic disks. Phys Fluids 11:3116–3122

    Google Scholar 

  • Yoon DK, Jenkins JT (2006) The influence of different species’ granular temperature on segregation in a binary mixture of dissipative grains. Phys Fluids 18:073303

    Article  Google Scholar 

Download references

Acknowledgments

L.T. acknowledges the organizer of the XVII Annual Meeting of the Fluid Dynamics Division (XVII-DDF) of the Mexican Physical Society, with special mention to Anne Cros. J. Klapp thank ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trujillo, L., Sigalotti, L.D.G., Klapp, J. (2013). Granular Hydrodynamics. In: Klapp, J., Medina, A., Cros, A., Vargas, C. (eds) Fluid Dynamics in Physics, Engineering and Environmental Applications. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27723-8_11

Download citation

Publish with us

Policies and ethics