Skip to main content
Log in

Living quicksand

  • Brief Communication
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The image of quicksand merciless swallowing a victim has inspired the fantasy of kids and helped writers and moviemakers to get rid of evil figures. Is this really possible? This is still disputed since till today it is not even clear what quicksand exactly is. In soil mechanics, the “quick-condition” is usually described as a liquefaction due to high water pressure essentially possible with any soil. However, previous studies have detected anomalous rheological properties from natural quicksand. Pushed by these contradicting points of view we set off to Lençois Maranhenses in North-East Brazil, where quicksands are common, to investigate rheology and strength in situ. We found that along very quiet drying lakes cyanobacteria cement an impermeable crust above a suspension of grains. Beyond a critical pressure, the crust fails releasing water from the collapsing colloidal structure and radically changing the depth dependence of the shear strength from a constant to a linear function. The sedimenting solid fraction and the rapid increase of shear strength can indeed trap an intruder endangering his life if the basin is sufficiently deep. As opposed to some previous studies, we find that this quicksand condition cannot be restored once it has collapsed. Finally, we also show some preliminary results from a contact dynamics model specially designed to mimic the living quicksand behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freundlich H., Juliusburger F.: Quicksand as a thixotropic system. T. Faraday Soc. 31, 769–773 (1935)

    Article  Google Scholar 

  2. Matthes G.H.: Quicksand. Sci. Am. 188, 97–102 (1953)

    Article  Google Scholar 

  3. Bahlmann L., Klaus S., Heringlake M., Baumeier W., Schmucker P., Wagner K.F.: Rescue of a patient out of a grain container: the quicksand effect of grain. Resuscitation 53, 101–104 (2002)

    Article  Google Scholar 

  4. Yamasaki S.: What is quicksand? Sci. Am. 288, 95–95 (2003)

    Article  Google Scholar 

  5. Lohse D., Rauhe R., Bergmann R., van der Meer D.: Creating a dry variety of quicksand. Nature 432, 689–690 (2004)

    Article  ADS  Google Scholar 

  6. Smith E.R.: The lifting effect of quicksand. Ohio J. Sci. 46, 327–328 (1946)

    Google Scholar 

  7. Lambe T.W., Whitman R.V.: Soil Mechanics. Wiley, New York (1969)

    Google Scholar 

  8. El Shamy U., Zeghal M.: Coupled continuum-discrete model for saturated granular soils. Eng. Mech. 131, 413–426 (2005)

    Article  Google Scholar 

  9. Craig R.F.: Soil Mechanics. E & FN Spon, New York (1997)

    Google Scholar 

  10. Huerta D.A., Sosa V., Vargas M.C., Ruiz-Suarez J.C.: Archimedes’ principle in fluidized granular systems. Phys. Rev. E 72, 031307 (2005)

    Article  ADS  Google Scholar 

  11. Kruszelnicki K.: And the earth did swallow them up!. New Sci. 152, 26–29 (1996)

    Google Scholar 

  12. Khaldoun A., Eiser E., Wegdam G.H., Bonn D.: Liquefaction of quicksand under stress. Nature 437, 635 (2005)

    Article  ADS  Google Scholar 

  13. Schwammle V., Herrmann H.J.: Solitary wave behaviour of dunes. Nature 426, 619–620 (2003)

    Article  ADS  Google Scholar 

  14. Parker W.R.: Quicksand structures in bedded tuffs of great langdale westmorland. Nature 210, 1247 (1966)

    Article  ADS  Google Scholar 

  15. Clayton C.R.I., Matthews M.C., Simons N.E.: Site Investigation. Blackwell Science, Oxford (1995)

    Google Scholar 

  16. Danin A.: Plant species—diversity and plant succession in a sandy area in the northern negev. J. Arid Environ. 167, 409–409 (1978)

    Google Scholar 

  17. Danin A.: Plant adaptions in desert dunes. J. Arid Environ. 21, 193–212 (1991)

    ADS  Google Scholar 

  18. Jean, M., Moreau, J.J.: Unilaterality and dry friction in the dynamics of rigid body collections. In: Contact Mechanics International Symposium, Lausanne, Presses Polytechniques et Universitaires Romandes, pp. 31–48 (1992)

  19. Moreau J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A Solid 13, 93–114 (1994)

    MATH  MathSciNet  Google Scholar 

  20. Kadau D., Bartels G., Brendel L., Wolf D.E.: Pore stabilization in cohesive granular systems. Phase Transit. 76, 315–331 (2003)

    Article  Google Scholar 

  21. Caballero G., Bergmann R., van der Meer D., Prosperetti A., Lohse D.: Role of air in granular jet formation. Phys. Rev. Lett. 99, 018001 (2007)

    Article  ADS  Google Scholar 

  22. Royer J.R., Corwin E.I., Flior A., Cordero M.-L., Rivers M.L., Eng P.E., Jaeger H.M.: Formation of granular jets observed by high-speed x-ray radiography. Nat. Phys. 1(3), 164–167 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Kadau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadau, D., Herrmann, H.J., Andrade, J.S. et al. Living quicksand. Granular Matter 11, 67–71 (2009). https://doi.org/10.1007/s10035-008-0117-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-008-0117-z

Keywords

Navigation