Skip to main content
Log in

Iceberg Disturbance and Successional Spatial Patterns: The Case of the Shelf Antarctic Benthic Communities

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

High-latitude, shelf Antarctic benthic communities are highly diversified and structured, dominated by benthic suspension feeders, and are subject to major natural disturbances. This study focuses on spatial patterns of the Antarctic benthos emphasizing the succession process after iceberg disturbance. For this purpose, underwater photographs (1 m2 each) from the southeastern Weddell Sea shelf (<300 m depth) were analyzed using techniques from the field of landscape ecology. Here, we examine measurements of spatial patterns (landscape indices) to describe changes in structural patterns along successional stages on these Antarctic benthic communities. We show a gradual separation from the early to older stages of succession based on sessile benthic cover area, size, shape, diversity, and interspersion and juxtaposition indices. Conceptually, the results describe a gradient from samples belonging to first stages of recovery with low cover area, low complexity of patch shape, small patch size, low diversity and patches poorly interspersed to samples from later stages with higher values of these indices. Cover area was the best predictor of recovery. We conclude that a variety of factors affect the observed successional sequences of Antarctic shelf benthic communities after iceberg disturbance, including the existence and dispersal abilities of propagules, growth rates, and competition between species. Overall, changes in the magnitude, frequency, and duration of disturbance regimes and alterations of ecosystem resilience pose major challenges for conservation of Antarctic benthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure 2.
Figure 3
Figure 4.

Similar content being viewed by others

REFERENCES

  • Anderson JB. 1991. The Antarctic continental shelf: results from marine geological and geophysical investigations. In: Tingey RJ, Ed. The geology of Antarctica. Oxford: Clarendon Press. pp 285–334

    Google Scholar 

  • Arntz WE, Brey T, Gallardo VA. 1994. Antarctic zoobenthos. oceanography and marine biology Annu Rev 32:241–304

    Google Scholar 

  • Barthel D, Gutt J. 1992. Sponge associations in the eastern Weddell Sea. Antarct Sci 4(2):137–50

    Google Scholar 

  • Branch GM. 1984. Competition between marine organisms: ecological and evolutionary implications. Oceanogr Mar Biol Annu Rev 22:429–593

    Google Scholar 

  • Brey T, Gutt J, Mackensen A, Starmans A. 1998. Growth and productivity of the high Antarctic bryozoan Melicerita obliqua. Mar Biol 132:327–33

    Article  Google Scholar 

  • Brown KM, Fraser KPP, Barnes DKA, Peck LS. 2004. Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141:121–9

    Article  PubMed  Google Scholar 

  • Buss LW. 1986. Competition and community organization on hard surfaces in the sea. In: Diamond JM, Case TJ, Eds. Community ecology. New York: Harper and Row. pp 517–36

    Google Scholar 

  • Carmack EC, Foster TD. 1977. Water masses and circulation in the Weddell Sea. In: Dunbar MJ, Alberta C, Eds. Polar Oceans: Proceedings of the polar oceans conference, May 1974. Montreal: Arctic Institute of North America. pp 167–77

  • Clarke A. 1982. Temperature and embryonic development in polar marine invertebrates. Int J Invertebr Reprod 5:71–82

    Google Scholar 

  • Clarke A, Crame JA. 1989. The origin of the Southern Ocean marine fauna. In: Crame JA, Ed. Origins and evolution of the Antarctic biota. London: Geological Society. pp 253–68

  • Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Washington: Carnegie Institution of Washington, Publication 242. 512 p

  • Conlan KE, Kvitek RG. 2005. Recolonization of soft-sediment ice scours on an exposed Arctic coast. Ice scour disturbance to benthic communities in the Canadian High Arctic. Mar Ecol Prog Ser 286:21–42

    Google Scholar 

  • Connell JH, Keough MJ. 1985. Disturbance and patch dynamics of subtidal marine animals on hard substrata. In: Pickett STA, White PS, Eds. The ecology of natural disturbance and patch dynamics. London: Academic. pp 125–51

    Google Scholar 

  • Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–44

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67(4):461–88

    Article  Google Scholar 

  • Dayton PK. 1979. Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. Colloques Internationaux du CNRS 291:271–82

    Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT. 1970. Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holdgate MW, Ed. Antarctic ecology, vol I. London: Academic. pp 244–58

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–28

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Parnell Edwards PB. 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol Monogr 62:421–45

    Article  Google Scholar 

  • Drapeau P, Leduc A, Giroux J, Savard J, Bergeron Y, Vickery W. 2000. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol Monogr 70(3):423–44

    Article  Google Scholar 

  • Dunton K. 1992. Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7(6):183–9

    Article  Google Scholar 

  • Forman RTT, Gordon M. 1986. Landscape ecology. New York: Wiley

    Google Scholar 

  • Gambi MC, Giangrande A, Patti FP. 2000. Comparative observations on reproductive biology of four species of Perkinsiana (Polychaeta: Sabellidae: Sabellinae) Bull Mar Sci 67(1):299–309

    Google Scholar 

  • Garrabou J, Ballesteros E, Zabala M. 2002. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coastal Shelf Sci 55:493–508

    Article  Google Scholar 

  • Gerdes D, Hilbig B, Montiel A. 2003. Impact of iceberg scouring on macrobenthic communities in the high Antarctic Weddell Sea. Polar Biol 26:295–301

    Google Scholar 

  • Gleitz M, Bathmann U, Lochte K. 1994. Build-up and decline of summer phytoplankton biomass in the eastern Weddell Sea, Antarctica. Polar Biol 14:413–422

    Article  Google Scholar 

  • Gray AI, Crawley MJ, Edwards PJ, Eds. 1986. Colonization, succession and stability. Oxford: Blackwell Scientific

  • Grigg RW, Maragos JE. 1974. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387–95

    Article  Google Scholar 

  • Gustafson EJ. 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–56

    Article  Google Scholar 

  • Gutt J, Piepenburg D. 2003. Scale-dependent impacts of catastrophic disturbances by grounding icebergs on the diversity of Antarctic benthos. Mar Ecol Prog Ser 253:77–83

    Google Scholar 

  • Gutt J, Schickan T. 1998. Epibiotic relationships in Antarctic benthos. Antarct Sci 10(4):398–405

    Google Scholar 

  • Gutt J, Starmans A. 1998. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–47

    Article  Google Scholar 

  • Gutt J, Starmans A. 2001. Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol 24:615–9

    Article  Google Scholar 

  • Holling CS, Meffe GK. 1996. Command and control and the pathology of natural resource management. Conserv Biol 10:328–37

    Article  Google Scholar 

  • Hughes TP. 1989. Community structure and diversity of coral reefs: the role of history. Ecology 70(1):275–9

    Article  Google Scholar 

  • Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–51

    Article  PubMed  Google Scholar 

  • Huston MA. 1979. A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  • Huston MA. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge: Cambridge University Press. 701p

    Google Scholar 

  • Lazzara MA, Jezek KC, Scambos TA, MacAyeal DR, van der Veen CJ. 1999. On the recent calving of icebergs from the Ross Sea ice shelf. Polar Geogr 23(3):201–12

    Article  Google Scholar 

  • Levin S. 1992. The problem of pattern and scale in ecology. Ecology 73(6):1943–67

    Article  Google Scholar 

  • Lewis CFM, Blasco SM. 1990. Character and distribution of sea-ice and iceberg scours. Clarke JI, Ed. Workshop on ice scouring and design of offshore pipelines, Calgary, Alberta, April 18–19, 1990. Calgary: Canada Oil and Gas Lands Administration, Energy, Mines, and Resources. pp 57–101

  • Lien R, Solheim A, ElverhØi A, Rokoengen K. 1989. Iceberg scouring and sea bed morphology on the eastern Weddell Sea, Antarctica. Polar Res 7:43–57

    Article  Google Scholar 

  • Lytle DA. 2001 Disturbance regimes and life-history evolution. Am Nat: 157(5):525–36

    Article  PubMed  CAS  Google Scholar 

  • Margalef R. 1963. On certain unifying principles in ecology. Am Nat 97:357–74

    Article  Google Scholar 

  • Margalef R. 1997. Our Biosphere. Oldendorf: Ecology Institute. 176 p

  • McClintock JB, Baker BJ. 1997. A review of the chemical ecology of Antarctic marine invertebrates. Am Zool 37:329–42

    CAS  Google Scholar 

  • McCook LJ. 1994. Understanding ecological community succession: causal models and theories, a review. Vegetatio 110:115–47

    Article  Google Scholar 

  • McGarigal K, Marks BJ. 1995. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Program documentation. U.S. Portland: Forest Service General Technical Report PNW 351

  • McPeek MA, Holt RD. 1992. The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–27

    Article  Google Scholar 

  • Nyström M, Folke C, Moberg F. 2000. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15(10):413–7

    Article  PubMed  Google Scholar 

  • Odum HT. 1969. The strategy of ecosystem development. Science 164:262–70

    Article  PubMed  CAS  Google Scholar 

  • Paine RT, Levin SA. 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol Monogr 51(2):145–78

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1:535–45

    Article  Google Scholar 

  • Park MG, Yang SR, Kang S-H, Chung KH, Shim JH. 1999. Phytoplankton biomass and primary production in the marginal ice zone of the northwestern Weddell Sea during austral summer. Polar Biol 21:251–61

    Article  Google Scholar 

  • Pearse JS, McClintock JB, Bosch I. 1991. Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 31:65–80

    Google Scholar 

  • Petraitis PS, Latham RE, Niesenbaum RA. 1989. The maintenance of species diversity by disturbance. Q Rev Biol 64(4):393–418

    Article  Google Scholar 

  • Pickett STA, White PS, Eds. 1985. The ecology of natural disturbance and patch dynamics. New York: Academic. 472p

  • Pickett STA, Collins SC, Armesto JJ. 1987. Models, mechanisms and pathways of succession. Bot Rev 53:335–71

    Google Scholar 

  • Poulin EA, Palma T, Féral JP. 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17(5):218–22

    Article  Google Scholar 

  • Rignot E, Jacobs SS. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296:2020–3

    Article  PubMed  CAS  Google Scholar 

  • Romme WH. 1982. Fire and landscape diversity in subalpine forests of Yellowstone National park. Ecol Monogr 52(2):199–221

    Article  Google Scholar 

  • Shepherd A, Wingham D, Payne T, Skvarca P. 2003. Larsen ice shelf has progressively thinned. Science 302:856–9

    Article  PubMed  CAS  Google Scholar 

  • Sousa WP. 2001. Natural disturbance and the dynamics of marine benthic communities. In: Bertness MD, Gaines SD, Hay ME, Eds. Marine community ecology. Massachusetts: Sinauer Associates. pp 85–130

  • Svane IB, Young CM. 1989. The ecology and behaviour of Ascidian larvae. Oceanography and marine biology. Annu Rev 27:45–90

    Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R. 2005. On the origin of Antarctic marine benthic structure. Trends Ecol Evol 20(10):534–40

    Article  PubMed  Google Scholar 

  • Teixidó N, Garrabou J, Arntz WE. 2002. Spatial pattern quantification of Antarctic benthic communities using Landscape indices. Mar Ecol Prog Ser 242:1–14

    Google Scholar 

  • Teixidó N, Garrabou J, Arntz WE. 2004. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance, and growth forms. Mar Ecol Prog Ser 278:1–16

    Google Scholar 

  • ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–79

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P.1998. CANOCO reference manual and user’s guide to canoco for windows (version 4). Ithaca: Microcomputer Power

  • ter Braak CJF, Verdenschot PFM. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57(3):255–89

    Article  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J. 2004. Accelerated sea-level rise from West Antarctica. Science 306:255–8

    Article  PubMed  CAS  Google Scholar 

  • Tréguer P, Jacques G. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biol 12:149–62

    Article  Google Scholar 

  • Turner MG. 1989. Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–97

    Article  Google Scholar 

  • Turner MG, Dale VH. 1998. Comparing large, infrequent disturbances: What have we learned? Ecosystems 1:493–6

    Article  Google Scholar 

  • Turner MG, Hargrove WW, Gardner RH, Romme WH. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW. 1997. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67(4):411–33

    Article  Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK. 1998. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–23

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV. 2001. Landscape ecology in theory and practice: pattern and process. New York: Springer. 352 p

    Google Scholar 

  • White PS, Jentsch A. 2001. The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W, Eds. Progress in botany, vol 62. Heidelberg: Springer. pp 399–449

  • Winston JD. 1983. Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bull Mar Sci 33(3):688–702

    Google Scholar 

  • Wu J, Levin SA. 1994. A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecol Monogr 64(4):447–64

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank P. López (gorgonians), E. Rodriguez (actinians), M. Zabala (bryozoans), A. Ramos (ascidians), and M.C. Gambi (polychaetes) for taxonomic assistance. D. Piepenburg facilitated his photographic material from stations 042 and 211 (ANT XV/III). Special thanks are due to W. Wosniok and H. Zaixso for their statistical support, J. Cowardin for his technical assistance with the FRAGSTATS software, J. Riera for his help in the image analysis, and T. Brey, C. Cogan, E. Isla, and S. Thrush for critical reading of the manuscript. We also thank David KA Barnes and 1 anonymous referee for helpful comments. This research was performed within the Ecology of the Antarctic Sea Ice Zone program (EASIZ) of the Scientific Committee on Antarctic Research (SCAR). N. Teixidó was partially funded by a Bremen University and Marie Curie (FP6-2002-EIF-010726)Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Teixidó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

eco-06-0023-File008 (rtf 337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixidó, N., Garrabou, J., Gutt, J. et al. Iceberg Disturbance and Successional Spatial Patterns: The Case of the Shelf Antarctic Benthic Communities. Ecosystems 10, 143–158 (2007). https://doi.org/10.1007/s10021-006-9012-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-006-9012-9

Keywords

Navigation