Skip to main content
Log in

Electrochemical and structural characterization of lithium titanate electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium titanate (LTO) materials of different particle size, surface area, and morphology were characterized by constant current cycling and cyclic voltammetry. By examining the particles and electrodes with scanning electron microscopy, we show that particle morphology, in addition to particle size, has important implications for high-rate performance. Large agglomerates, even when porous and made of small crystallites, cannot effectively form homogenous electrodes with the polymer binder and carbon conducting diluents; hence, low power performance results. Another nanostructured LTO of very high surface area was found to have poor electrochemical performance most likely due to its high concentration of structural defects. We recommend further development in nanoparticles of LTO of optimal crystallinity as well as improved electrode homogeneity through the use of more compatible binders and conducting diluents and better electrode processing techniques. Simultaneous realization of these imperatives should facilitate the development of LTO-based high-power batteries for automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gotcher A (2005) Adv Mater Process 163:32

    CAS  Google Scholar 

  2. Verbrugge MW, Liu P (2007) J Power Sources 174:2. doi:10.1016/j.jpowsour.2007.03.019

    Article  CAS  Google Scholar 

  3. Du Pasquier A, Plitz I, Menocal S, Amatucci G (2003) J Power Sources 115:171. doi:10.1016/s0378-7753(02) 00718-8

    Article  Google Scholar 

  4. Plitz I, DuPasquier A, Badway F et al (2006) Appl Phys A Mater Sci Process 82:615. doi:10.1007/s00339-005-3420-0

    Article  CAS  Google Scholar 

  5. Du Pasquier A, Plitz I, Gural J, Badway F, Amatucci GG (2004) J Power Sources 136:160. doi:10.1016/j.jpowsour.2004.05.023

    Article  Google Scholar 

  6. Stewart S, Albertus P, Srinivasan V et al (2008) J Electrochem Soc 155:A253. doi:10.1149/1.2830552

    Article  CAS  Google Scholar 

  7. Bach S, Pereira-Ramos JP, Baffier N (1998) J Mater Chem 8:251. doi:10.1039/a706388a

    Article  CAS  Google Scholar 

  8. Gao J, Jiang CY, Ying JR, Wan CR (2006) J Power Sources 155:364

    CAS  Google Scholar 

  9. Gao J, Ying JR, Jiang CY, Wan CR (2007) J Power Sources 166:255. doi:10.1016/j.jpowsour.2007.01.014

    Article  CAS  Google Scholar 

  10. Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K (2003) J Power Sources 119:88. doi:10.1016/S0378-7753(03) 00131-9

    Article  Google Scholar 

  11. Hao YJ, Lai QY, Lu JZ, Wang HL, Chen YD, Ji XY (2006) J Power Sources 158:1358. doi:10.1016/j.jpowsour.2005.09.063

    Article  CAS  Google Scholar 

  12. Jiang CH, Zhou Y, Honma I, Kudo T, Zhou HS (2007) J Power Sources 166:514. doi:10.1016/j.jpowsour.2007.01.065

    Article  CAS  Google Scholar 

  13. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431. doi:10.1149/1.2048592

    Article  CAS  Google Scholar 

  14. Sorensen EM, Barry SJ, Jung HK, Rondinelli JR, Vaughey JT, Poeppelmeier KR (2006) Chem Mater 18:482. doi:10.1021/cm052203y

    Article  CAS  Google Scholar 

  15. Wu L, Kan SR, Lu SG, Zhang XJ, Jin WH (2007) Trans Nonferrous Met Soc China 17:S117

    CAS  Google Scholar 

  16. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) J Power Sources 82:300. doi:10.1016/S0378-7753(99) 00209-8

    Article  Google Scholar 

  17. Guerfi A, Charest P, Kinoshita K, Perrier M, Zaghib K (2004) J Power Sources 126:163. doi:10.1016/j.jpowsour.2003.08.045 doi:10.1016/j.jpowsour.2003.08.045

    Article  CAS  Google Scholar 

  18. Julien CM, Zaghib K (2004) Electrochim Acta 50:411. doi:10.1016/j.electacta.2004.03.052

    Article  CAS  Google Scholar 

  19. Matsui E, Abe Y, Senna M, Guerfi A, Zaghib K (2008) J Am Ceram Soc 91:1522. doi:10.1111/j.1551-2916.2008.02269.x

    Article  CAS  Google Scholar 

  20. Bach S, Pereira-Ramos JP, Baffier N (1999) J Power Sources 82:273. doi:10.1016/S0378-7753(98) 00216-X

    Article  Google Scholar 

  21. Lee SS, Byun KT, Park JP, Kim SK, Kwak HY, Shim IW (2007) Dalton Trans 4182–4184. doi:10.1039/b707164g

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Sherman, E. & Verbrugge, M. Electrochemical and structural characterization of lithium titanate electrodes. J Solid State Electrochem 14, 585–591 (2010). https://doi.org/10.1007/s10008-009-0815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0815-4

Keywords

Navigation