Skip to main content

Advertisement

Log in

Effect of calendering on rate performance of Li4Ti5O12 anodes for lithium-ion batteries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lithium titanate (LTO) anodes despite their low specific capacity of 175 mAhg−1 from a low volume change and intercalation voltage of 1.55 V vs lithium are excellent for automotive applications requiring fast and safe charging at times like regenerative braking. The present study focuses exclusively on the effect of calendering on the charging rate of LTO anodes. Calendering is a process where the current collector coated with the electrode, both anode, and the cathode is passed between two rolls at an elevated temperature to compact and improve the electrode’s energy density and electrochemical performance. The anode, LTO coated on aluminum foil current collector, calendered at about 42% (i.e. reducing the thickness of uncalendered anode from ~175 to ~100 μm) showed exceptional capacity retention even at 10C rate. Rate performance analyses reveal that calendering improves the capacity at high C-rate, whereas it doesn’t impact significantly at low C-rate. Electrochemical impedance spectroscopy measurements show that the resistive losses decrease with calendering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Zheng, L. Tan, G. Liu, X. Song, V.S. Battaglia, J. Power Sources 208, 52–57 (2012)

    Article  CAS  Google Scholar 

  2. Y. Sheng, C.R. Fell, Y.K. Son, B.M. Metz, J. Jiang, C. Benjamin, Church Front. Energy Res. 2, 56 (2014)

    Google Scholar 

  3. J. Shim, K.A. Striebel, J. Power Sources 119–121, 934–937 (2003)

    Article  Google Scholar 

  4. I.V. Thorat, D.E. Stephenson, N.A. Zacharias, K. Zaghib, J.N. Harb, D.R. Wheeler, J. Power Sources 188, 592 (2009)

    Article  CAS  Google Scholar 

  5. X. Sun, P.V. Radovanovic, B. Cui, New J. Chem. 39, 38–63 (2015)

    Article  CAS  Google Scholar 

  6. C.P. Sandhya, B. John, C. Gouri, Ionics 20, 601–620 (2014)

    Article  CAS  Google Scholar 

  7. G.N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci. 5(5), 6652 (2012)

    Article  CAS  Google Scholar 

  8. T.F. Yi, L.J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, J. Phys. Chem. Solids 71(9), 1236–1242 (2010)

    Article  CAS  Google Scholar 

  9. K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81, 300 (1999)

    Article  Google Scholar 

  10. K. Mukai, Y. Kato, H. Nakano, J. Phys. Chem. C 118(6), 2992–2999 (2014)

    Article  CAS  Google Scholar 

  11. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142(5), 1431–1435 (1995)

    Article  CAS  Google Scholar 

  12. M.G. Verde, L. Baggetto, N. Balke, G.M. Veith, J.K. Seo, Z. Wang, Y.S. Meng, ACS Nano 104, 4312–4321 (2016)

    Article  Google Scholar 

  13. Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev. 2(1), 1–28 (2019)

    Article  CAS  Google Scholar 

  14. J.T. Warner. Lithium-ion Battery Chemistries: A Primer, Elsevier, (2019)

  15. S.-T. Myung, Y. Hitoshi, Y.-K. Sun, J. Mater. Chem. 21(27), 9891 (2011)

    Article  CAS  Google Scholar 

  16. E. Ligneel, B. Lestriez, D. Guyomard, J. Power Sources 174(2), 716–719 (2007)

    Article  CAS  Google Scholar 

  17. D. Liu, L. Chen, T. Liu, T. Fan, Adv. Chem. Eng. Sci. 4, 515–528 (2014)

    Article  Google Scholar 

  18. S. Bhattacharya, A.K. Agarwal, T. Rajagopalan, V.K. Patel, Nano-Energetic Mater. (2019). https://doi.org/10.1007/978-981-13-3269-2

  19. H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Electrochem. Soc. 157(10), A1060–A1066 (2010)

    Article  CAS  Google Scholar 

  20. A. van Bommel, R. Divigalpitiya, J. Electrochem. Soc. 159(11), A1791–A1795 (2012)

    Article  Google Scholar 

  21. B. Priyono, P.B. Murti, A.Z. Syahrial, A. Subhan, AIP Conf. Proc. 1826, 020005 (2017)

    Article  Google Scholar 

  22. J. Illig, T. Chrobak, D. Klotz, E. Ivers-Tiffée, ECS Trans. 33, 3–15 (2011)

    Article  CAS  Google Scholar 

  23. J.-H. Choi, W.-H. Ryu, K. Park, J.-D. Jo, S.-M. Jo, D.-S. Lim, I.-D. Kim, Sci. Rep. 4, 7334 (2014)

    Article  CAS  Google Scholar 

  24. J. Shim, K.A. Striebel, J. Power Sources 130(1-2), 247–253 (2004)

    Article  CAS  Google Scholar 

  25. B. Ziebarth, M. Klinsmann, T. Eckl, C. Elsasser, Phys. Rev. B - Condens. Matter Mater. Phys. 89, 174301 (2014)

    Article  Google Scholar 

  26. C.Y. Ouyang, Z.Y. Zhong, M.S. Lei, Electrochem. Commun. 9(5), 1107–1112 (2007)

    Article  CAS  Google Scholar 

  27. P.C. Tsai, W.D. Hsu, S.K. Lin, J. Electrochem. Soc. 161(3), A439–A444 (2014)

    Article  CAS  Google Scholar 

  28. Y.R. Jhan, J.G. Duh, Electrochim. Acta 63, 9–15 (2012)

    Article  CAS  Google Scholar 

  29. H. Song et al., Sci. Rep. 4, 4350 (2014)

    Article  Google Scholar 

  30. H. Ge, N. Li, D. Li, C. Dai, D. Wang, J. Phys. Chem. C 113(16), 6324–6326 (2009)

    Article  CAS  Google Scholar 

  31. X. Han, M. Ouyang, L. Lu, J. Li, Energies 2014(7), 4895–4909 (2014)

    Article  Google Scholar 

  32. J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz, E. Ivers-Tiffée, J. Electrochem. Soc. 159(7), A952–A960 (2012)

    Article  CAS  Google Scholar 

  33. D.J. Robles, C.F. Chen, Y. Barsukov, P.P. Mukherjee, J. Electrochem. Soc. 164(4), A837–A847 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Truptimayee Acharya is grateful to the Council of Scientific & Industrial Research (CSIR), HRDG, India for providing the prestigious CSIR Research Associateship, India through CSIR Award Letter No. 09/1059(0014)/2018-EMR-I dated 17.04.2018 and IIT Bhubaneswar for the support during the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soobhankar Pati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, T., Chaupatnaik, A., Pathak, A. et al. Effect of calendering on rate performance of Li4Ti5O12 anodes for lithium-ion batteries. J Electroceram 45, 85–92 (2020). https://doi.org/10.1007/s10832-020-00227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00227-2

Keywords

Navigation