Skip to main content
Log in

Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born–Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Becke A (1992) Densityfunctional thermochemistry. III. the role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  Google Scholar 

  2. Becke D (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  3. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000). Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  4. Boero M, Ikeda T, Ito E K T (2006) Hsc70 ATPase: an insight into water dissociation and joint catalytic role of K + and Mg 2+ metal cations in the hydrolysis reaction. J Am Chem Soc 128(51):16,798–16,807

    Article  CAS  Google Scholar 

  5. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014,101–1–014,101–6

    Article  Google Scholar 

  6. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(2471):2471–2474

    Article  CAS  Google Scholar 

  7. Case D, Darden T, Cheatham III T, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz A, Kolossvry K I W, Paesani F, Vanicek J, Wolf R, Liu J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M, Cui G, Roe D, Mathews M DHS, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman P (2012) Amber 12. University of California, San Francisco

  8. Case D, Cheatham T I, Darden T, Gohlke H, Luo R, Merz K, Onufriev A, Simmerling C, Wang B, Woods R (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  9. Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7(3):R55—R60

    Article  Google Scholar 

  10. Derat E, Shaik S, Rovira C, Vidossich P, Alfonso-Prieto M (2007) The effect of a water molecule on the mechanism of formation of compound 0 in horseradish peroxidase. J Am Chem Soc 129(20):6346–6347

    Article  CAS  Google Scholar 

  11. Duan Y, Wu C, Chowdhury S, Lee M, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comp Chem 24:1999–2012

    Article  CAS  Google Scholar 

  12. Dunklea J, Xiongb L, Mankinb A, Catea J (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. PNAS 107(40):17,152–17,157

    Article  Google Scholar 

  13. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth V, Salvador P, Dannenberg J, Dapprich S, Daniels AF, Foresman J, Ortiz J, Cioslowski J, Fox D (2003) Gaussian 09 Revision A.1. Gaussian Inc. Wallingford, CT 2009

  14. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54(3):1703–1710

    Article  CAS  Google Scholar 

  15. Hoe W, Cohen A, Handy N (2001) Assessment of a new local exchange functional OPTX. Chem Phys Lett 341:319–328

    Article  CAS  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864—B891

    Article  Google Scholar 

  17. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  18. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  19. Kirchhoff F, Kresse G, Gilla M (1997) Structure and dynamics of liquid selenium. Phys Rev B 57(17):10, 482–10,495

    Article  Google Scholar 

  20. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140(4A):A1133—A1138

    Article  Google Scholar 

  21. Kulczycka-Mierzejewska K, Trylska J, Sadlej J (2012) Quantum mechanical studies of lincosamides. J Mol Model 18(6):2727–2740

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr R (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Liljas A (2004) Structural aspects of protein synthesis. World Scientific Publishing Company

  24. Morar M, Bhullar K, Hughes D, Junop M, Wright G (2009) Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure 17(12):1649–1659

    Article  CAS  Google Scholar 

  25. Mura C, McCammon J (2008) Molecular dynamics of a.kappa.b DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation. Nucleic Acids Research 36(15):4941–4955

    Article  CAS  Google Scholar 

  26. Pearlman D, Case D, Caldwell J, Ross W, Cheatham T, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  27. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 7(18):3865–3868

    Article  Google Scholar 

  28. Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100(13):136, 406–136,409

    Article  Google Scholar 

  29. Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26(16):1781– 1802

    Article  CAS  Google Scholar 

  30. Ryckaert J, Ciccotti G, Berendsen H (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23(3):327–341

    Article  CAS  Google Scholar 

  31. Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide (Interdisciplinary Applied Mathematics). Springer

  32. Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821

    Article  CAS  Google Scholar 

  33. Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and reveals the nascent peptide exit path in the ribosome. JMB 330(5):1005–1014

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  35. Tu D, Blaha G, Moore P, Steitz T (2005) Structures of MLS B K antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121 (2):257– 270

    Article  CAS  Google Scholar 

  36. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Chem Comm 167(2):103–128

    CAS  Google Scholar 

  37. Verdier L, Bertho JGG-B, Girault J (2000) Lincomycin and clindamycin conformations. A fragment shared by macrolides, ketolides and lincosamides determined from TRNOE ribosome-bound conformations. Bioorg & Med Chem 8:1225–1243

    Article  CAS  Google Scholar 

  38. Vidossich P, Alfonso-Prieto M, Carpena X, Loewen P, Fita I, Rovira C (2007) Versatilityoftheelectronicstructureofcompoundiincatalase peroxidases. J Am Chem Soc 129 44:13,436–13,446

    Article  Google Scholar 

  39. Wang I, Karplus M (1973) Dynamics of organic reactions. J Am Chem Soc 95(24):8160–8164

    Article  CAS  Google Scholar 

  40. Wang J, Cieplak P, Kollman P (2000) How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules J Comp Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  41. Warshel W, Karplus M (1975) Semiclassical trajectory approach to photoisomerization. Chem Phys Lett 32(1):11–17

    Article  CAS  Google Scholar 

  42. Zhang Y, Yang W (1998) Comment on generalized gradient approximation made simple. Phys Rev Lett 80(4):890–890

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computational resources were provided by the Interdisciplinary Centre for Mathematical and Computational Modelling of the University of Warsaw by grants G31-4 G31-13 and G59-9. The authors acknowledge support from the University of Warsaw (CeNT/BST), National Science Centre (DEC-2012/05/B/NZ1/00035 and UMO-2013/09/N/ST4/00932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Sadlej.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 922 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulczycka-Mierzejewska, K., Trylska, J. & Sadlej, J. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics. J Mol Model 22, 20 (2016). https://doi.org/10.1007/s00894-015-2881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2881-0

Keywords

Navigation