Skip to main content
Log in

Structural and dynamical properties of Li+-dibenzo-18-crown-6(DB18C6) complex in pure solvents and at the aqueous-organic interface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Microstructure of dibenzo-18-crown-6 (DB18C6) and DB18C6/Li+ complex in different solvents (water, methanol, chloroform, and nitrobenzene) have been analyzed using radial distribution function (RDF), coordination number (CN), and orientation profiles, in order to identify the role of solvents on complexation of DB18C6 with Li+, using molecular dynamics (MD) simulations. In contrast to aqueous solution of LiCl, no clear solvation pattern is found around Li+ in the presence of DB18C6. The effect of DB18C6 has been visualized in terms of reduction in peak height and shift in peak positions of gLi-Ow. The appearance of damped oscillations in velocity autocorrelation function (VACF) of complexed Li+ described the high frequency motion to a “rattling” of the ion in the cage of DB18C6. The solvent-complex interaction is found to be higher for water and methanol due to hydrogen bond (HB) interactions with DB18C6. However, the stability of DB18C6/Li+ complex is found to be almost similar for each solvent due to weak complex-solvent interactions. Further, Li+ complex of DB18C6 at the liquid/liquid interface of two immiscible solvents confirm the high interfacial activity of DB18C6 and DB18C6/Li+ complex. The complexed Li+ shows higher affinity for water than organic solvents; still they remain at the interface rather than migrating toward water due to higher surface tension of water as compared to organic solvents. These simulation results shed light on the role of counter-ions and spatial orientation of species in pure and hybrid solvents in the complexation of DB18C6 with Li+.

DB18C6/Li+ complex in pure solvents (water, methanol, chloroform, and nitrobenzene) and water/nitrobenzene interface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  2. Bauer M, Forsthoff A, Baethge C, Adli M, Berghofer A, Dopfmer S, Bschor T (2003) Eur Arch Psychiatry Clin Neurosci 253:132–139

    Article  Google Scholar 

  3. Fumo N, Goswami DY (2002) Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Sol Energy 72(4):351–361. doi:10.1016/S0038-092X(02)00013-0

    Article  CAS  Google Scholar 

  4. Stull JO, White MG (1985) Air revitalization compounds: a literature survey. Toxicol Environ Chem 10(2):133–155. doi:10.1080/02772248509357098

    Article  CAS  Google Scholar 

  5. Lavernia EJ, Srivatsan TS, Mohamed FA (1990) Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys. J Mater Sci 25(2):1137–1158. doi:10.1007/bf00585420

    CAS  Google Scholar 

  6. Symons EA (1985) Lithium isotope separation: a review of possible techniques. Sep Sci Technol 20(9–10):633–651. doi:10.1080/01496398508060696

    Article  CAS  Google Scholar 

  7. Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34(16):3907–3916. doi:10.1016/S0043-1354(00)00152-4

    Article  CAS  Google Scholar 

  8. Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8. doi:10.1016/j.jhazmat.2007.09.101

    Article  CAS  Google Scholar 

  9. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76(1):63–65. doi:10.1016/S0960-8524(00)00072-9

    Article  CAS  Google Scholar 

  10. Kurniawan, Tonni A (2006) Physico chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. doi:10.1016/j.cej.2006.01.015

    Article  CAS  Google Scholar 

  11. Turker AR (2012) Separation, preconcentration and speciation of metal ions by solid phase extraction. Sep Purif Rev 41(3):169–206. doi:10.1080/15422119.2011.585682

    Article  CAS  Google Scholar 

  12. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036. doi:10.1021/ja01002a035

    Article  CAS  Google Scholar 

  13. Inokuchi Y, Boyarkin OV, Kusaka R, Haino T, Ebata T, Rizzo TR (2011) UV and IR spectroscopic studies of cold alkali metal ion-crown ether complexes in the gas phase. J Am Chem Soc 133:12256–12263

    Article  CAS  Google Scholar 

  14. Kriz J, Dybal J, Makrlik E, Budka J (2008) Interaction of hydronium ion with dibenzo-18-crown-6: NMR, IR, and theoretical study. J Phys Chem A 112(41):10236–10243. doi:10.1021/jp805757d

    Article  CAS  Google Scholar 

  15. Guo X, Yudan Z, Mingjie W, Ximing W, Linghong L, Xiaohua L (2011) Theoretical study of hydration effects on the selectivity of 18-crown-6 between K+ and Na+. Chin J Chem Eng 19(2):212–216. doi:10.1016/S1004-9541(11)60156-0

    Article  CAS  Google Scholar 

  16. Buschmann HJ, Mutihac RC, Schollmeyer E (2010) Interactions between crown ethers and water, methanol, acetone, and acetonitrile in halogenated solvents. J Sol Chem 39(2):291–299. doi:10.1007/s10953-010-9499-8

    Article  CAS  Google Scholar 

  17. Buschmann HJ (1992) A comparison of different experimental techniques for the determination of the stabilities of polyether, crown ether and cryptand complexes in solution. Inorg Chim Acta 195(1):51–60. doi:10.1016/S0020-1693(00)83849-9

    Article  CAS  Google Scholar 

  18. Karkhaneei E, Zebarjadian MH, Shamsipur M (2001) Complexation of Ba2+, Pb2+, Cd2+, and UO2 2+ Ions with 18-crown-6 and dicyclohexyl-18-crown-6 in nitromethane and acetonitrile solutions by a competitive NMR technique using the 7Li nucleus as a probe. J Sol Chem 30(4):323–333. doi:10.1023/a:1010323106004

    Article  CAS  Google Scholar 

  19. Pedersen CJ (1988) The discovery of crown ethers. Science 241(4865):536–540. doi:10.1126/science.241.4865.536

    Article  CAS  Google Scholar 

  20. Anderson JD, Paulsen ES, Dearden DV (2003) Alkali metal binding energies of dibenzo-18-crown-6: experimental and computational results. Int J Mass Spect 227:63–76

    Article  CAS  Google Scholar 

  21. Boda A, Ali SM, Shenoi MRK, Rao H, Ghosh SK (2011) DFT modeling on the suitable crown ether architecture for complexation with Cs+ and Sr2+ metal ions. J Mol Model 17(5):1091–1108

    Article  CAS  Google Scholar 

  22. Heo J (2012) Theoretical studies on selectivity of dibenzo-18-crown-6-ether for alkaline earth divalent cations bull Korean. Chem Soc 33(8):2669–2674

    CAS  Google Scholar 

  23. Boda A, Ali SM, Rao H, Ghosh SK (2012) Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction. J Mol Model 18:3507–3522

    Article  CAS  Google Scholar 

  24. Frensdorff HK (1971) Stability constants of cyclic polyether complexes with univalent cations. J Am Chem Soc 93(3):600–606. doi:10.1021/ja00732a007

    Article  CAS  Google Scholar 

  25. Martin ME, Losa AM, Galvin IF, Aguilar MA (2006) An ASEP/MD study of liquid chloroform. J Mol Struct (THEOCHEM) 775:81–86. doi:10.1016/j.theochem.2006.07.019

    Article  Google Scholar 

  26. Jorge M, Gulaboski R, Pereira CM, Cordeiro MN (2006) Molecular dynamics study of 2-nitrophenyl octyl ether and nitrobenzene. J Phys Chem B 110(25):12530–12538. doi:10.1021/jp061301j

    Article  CAS  Google Scholar 

  27. Abascal JL, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23):234505–234517

    Article  CAS  Google Scholar 

  28. Boda A, De S, Ali SM, Tulishetti S, Khan S, Singh JK (2012) From microhydration to bulk hydration of Sr2+ metal ion: DFT, MP2 and molecular dynamics study. J Mol Liq 172:110–118

    Article  CAS  Google Scholar 

  29. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  30. Peter DJ, Grootenhuis PAK (1989) Molecular mechanics and dynamics studies of crown ether—cation interactions: free energy calculations on the cation selectivity of dibenzo-18-crown-6 and dibenzo-30-crown-10. J Am Chem Soc 111(6):2152–2158. doi:10.1021/ja00188a032

    Article  Google Scholar 

  31. Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87(25):5071–5083. doi:10.1021/j150643a008

    Article  CAS  Google Scholar 

  32. Metya AK, Hens A, Singh JK (2012) Molecular dynamics study of vapor liquid equilibria and transport properties of sodium and lithium based on EAM potentials. Fluid Phase Equilib 313:16–24. doi:10.1016/j.fluid.2011.08.026

    Article  Google Scholar 

  33. Kumar R, Schmidt JR, Skinner JL (2007) Hydrogen bonding definitions and dynamics in liquid water. J Chem Phys 126(20):204107–204112

    Article  CAS  Google Scholar 

  34. Spangberg D, Rey R, Hynes JT, Hermansson K (2003) Rate and mechanisms for water exchange around Li+(aqs) from MD simulations. J Phys Chem B 107(18):4470–4477. doi:10.1021/jp027230f

    Article  Google Scholar 

  35. Duvail M, Guilbaud P (2011) Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations. Phys Chem Chem Phys 13(13):5840–5847. doi:10.1039/c0cp02535f

    Article  CAS  Google Scholar 

  36. Sieffert N, Wipff G (2007) Importance of interfacial adsorption in the biphasic hydroformylation of higher olefins promoted by cyclodextrins: a molecular dynamics study at the decene/water interface. Chem Eur J 13(7):1978–1990. doi:10.1002/chem.200601150

    Article  CAS  Google Scholar 

  37. Benjamin I (1997) Molecular structure and dynamics at liquid-liquid interfaces. Annu Rev Phys Chem 48(1):407–451. doi:10.1146/annurev.physchem.48.1.407

    Article  CAS  Google Scholar 

  38. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. doi:10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  39. Troxler L, Wipff G (1994) Conformation and dynamics of 18-crown-6, cryptand 222, and their cation complexes in acetonitrile studied by molecular dynamics simulations. J Am Chem Soc 116(4):1468–1480. doi:10.1021/ja00083a036

    Article  CAS  Google Scholar 

  40. Mazor MH, McCammon JA, Lybrand TP (1990) Molecular recognition in nonaqueous solvent. 2. Structural and thermodynamic analysis of cationic selectivity of 18-crown-6 in methanol. J Am Chem Soc 112(11):4411–4419. doi:10.1021/ja00167a044

    Article  CAS  Google Scholar 

  41. Leuwerink EHT, Harkema S, Briels WJ, Feil D (1993) Molecular dynamics of 18-crown-6 complexes with alkali–metal cations and urea: prediction of their conformations and comparison with data from the cambridge structural database. J Comput Chem 14(8):899–906

    Article  CAS  Google Scholar 

  42. Thompson MA, Glendening ED, Feller D (1994) The nature of K+/crown ether interactions: a hybrid quantum mechanical-molecular mechanical study. J Phys Chem 98(41):10465–10476. doi:10.1021/j100092a015

    Article  CAS  Google Scholar 

  43. Robak W, Apostoluk W, Maciejewski P (2006) Analysis of liquid liquid distribution constants of nonionizable crown ethers and their derivatives. Anal Chim Acta 569:119–131. doi:10.1016/j.aca.2006.03.098

    Article  CAS  Google Scholar 

  44. Padro JA, Saiz L, Guardia E (1997) Hydrogen bonding in liquid alcohols: a computer simulation study. J Mol Struct 416:243–248

    Article  CAS  Google Scholar 

  45. Choi C, Heo J, Kim N (2012) Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: a density functional theory study using a continuum solvation model. Chem Cent J 6:1–8

    Article  Google Scholar 

  46. Kusaka R, Inokuchi Y, Ebata T (2008) Structure of hydrated clusters of dibenzo-18-crown-6-ether in a supersonic jet-encapsulation of water molecules in the crown cavity. Phys Chem Chem Phys 10(41):6238–6244. doi:10.1039/b807113f

    Article  CAS  Google Scholar 

  47. Fedorov MV, Goodman JM, Schumm S (2007) Solvent effects and hydration of a tripeptide in sodium halide aqueous solutions: an in silico study. Phys Chem Chem Phys 9(40):5423–5435. doi:10.1039/b706564g

    Article  CAS  Google Scholar 

  48. Miyabe K, Isogai R (2013) Estimation of molecular diffusivity in liquid phase systems on the basis of the absolute rate theory. Anal Sci 29(4):467–472

    Article  CAS  Google Scholar 

  49. Hartman RS, Alavi DS, Waldeck DH (1991) An experimental test of dielectric friction models using the rotational diffusion of aminoanthraquinones. J Phys Chem 95(20):7872–7880. doi:10.1021/j100173a059

    Article  CAS  Google Scholar 

  50. Troxler L, Wipff G (1998) Interfacial behavior of ionophoric systems: molecular dynamics studies on 18-crown-6 and its complexes at the water-chloroform interface. Anal Sci 14(1):43–56

    Article  CAS  Google Scholar 

  51. Wipff G, Lauterbach M (1995) Complexation of alkali cations by calix[4]crown ionophores: conformation and solvent dependent Na+/Cs+ binding selectivity and extraction: MD simulations in the gas phase, in water and at the chloroform-water interface. Supramol Chem 6(1–2):187–207. doi:10.1080/10610279508032535

    Article  CAS  Google Scholar 

  52. Varnek A, Troxler L, Wipff G (1997) Adsorption of ionophores and of their cation complexes at the water/chloroform interface: a molecular dynamics study of a [2.2.2]cryptand and of phosphoryl-containing podands. Chem Eur J 3(4):552–560. doi:10.1002/chem.19970030410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was done at IIT/Kanpur under DGFS fellowship, supported by BRNS project.

We are grateful to IIT Kanpur HPC for computational support. We are also thankful to Anitha K. of IIT Kanpur, Dr. S.K. Ghosh, Director ChEG and Dr. K.T. Shenoy, Head ChED of BARC for their continuous encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sk. M. Ali or Jayant K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Ali, S.M. & Singh, J.K. Structural and dynamical properties of Li+-dibenzo-18-crown-6(DB18C6) complex in pure solvents and at the aqueous-organic interface . J Mol Model 20, 2413 (2014). https://doi.org/10.1007/s00894-014-2413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2413-3

Keywords

Navigation