Skip to main content

Advertisement

Log in

Response surface methodology in docking study of small molecule BACE-1 inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Computational evaluation of ligand-receptor binding via docking strategy is a well established approach in structure-based drug design. This technique has been applied frequently in developing molecules of biological interest. However, any procedure would require an optimization set up to be more efficient, economic and time-saving. Advantages of modern statistical optimization methods over conventional one-factor-at-a-time studies have been well revealed. The optimization by experimental design provides a combination of factor levels simultaneously satisfying the requirements considered for each of the responses and factors. In this study, response surface method was applied to optimize the prominent factors (number of genetic algorithm runs, population size, maximum number of evaluations, torsion degrees for ligand and number of rotatable bonds in ligand) in AutoDock4.2-based binding study of small molecule β-secretase inhibitors as anti-alzheimer agents. Results revealed that a number of rotatable bonds in ligand and maximum number of docking evaluations were determinant variables affecting docking outputs. The interference between torsion degrees for ligand and number of genetic algorithm runs for docking procedure was found to be the significant interaction term in our model. Optimized docking outputs exhibited a high correlation with experimental fluorescence resonance energy transfer-based IC50s for β-secretase inhibitors (R2 = 0.9133).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Querfurth HWLF (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  Google Scholar 

  2. Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134

    Article  CAS  Google Scholar 

  3. Pietrzik C, Behl C (2005) Concepts for the treatment of Alzheimer's disease: molecular mechanisms and clinical application. Int J Exp Pathol 86(3):173–185

    Article  CAS  Google Scholar 

  4. Selkoe DJ (2008) Soluble oligomers of the amyloid [beta]-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  CAS  Google Scholar 

  5. Albert JS (2009) Progress in the development of β-secretase inhibitors for Alzheimer's disease. Prog Med Chem 48:133–161

    Article  CAS  Google Scholar 

  6. Ziora Z, Kimura T, Kiso Y (2006) Small-sized BACE1 inhibitors. Drugs Future 31(1):53–63

    Article  CAS  Google Scholar 

  7. Mandal S, Moudgil M, Mandal SK (2009) Rational drug design. Eur J Pharmacol 625(1–3):90–100

    Article  CAS  Google Scholar 

  8. Krovat EM, Steindl T, Langer T (2005) Recent advances in docking and scoring. Curr Comput Aided Drug 1(1):93–102

    Article  CAS  Google Scholar 

  9. Putta S, Beroza P (2007) Shapes of things: computer modeling of molecular shape in drug discovery. Curr Top Med Chem 7(15):1514–1524

    Article  CAS  Google Scholar 

  10. Laurie R, Alasdair T, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406

    Article  CAS  Google Scholar 

  11. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein–ligand docking: current status and future challenges. Proteins Struct Funct Bioinf 65(1):15–26

    Article  CAS  Google Scholar 

  12. Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR (2010) Design and synthesis of Hsp90 inhibitors: exploring the SAR of sansalvamide a derivatives. Bioorg Med Chem 18(18):6822–6856

    Article  CAS  Google Scholar 

  13. Sergio Filipe Sousa PAF, Ramo MJ (2006) Protein–Ligand Docking: Current Status and Future Challenge. Proteins Struct Funct Bioinf 65:15–26

    Article  Google Scholar 

  14. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. WIREs Comp Stat 2(2):128–149

    Article  Google Scholar 

  15. Hanrahan G, Lu K (2006) Application of factorial and response surface methodology in modern experimental design and optimization. Crit Rev Anal Chem 363(4):141–151

    Article  Google Scholar 

  16. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92(6):1603–1616

    Article  CAS  Google Scholar 

  17. Nazzal S, Khan MA (2002) Response surface methodology for the optimization of ubiquinone self-nanoemulsified drug delivery system. AAPS Pharm Sci Tech 3(1):23–31

    Article  Google Scholar 

  18. Palamakula A, Nutan MTH, Khan MA (2004) Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form. AAPS Pharm Sci Tech 5(4):114–121

    Article  Google Scholar 

  19. Jessy S, Shital L (2008) Response surface methodology for the optimization of celecoxib self-microemulsifying drug delivery system. Indian J Pharm Sci 70(5):585–590

    Article  Google Scholar 

  20. Khattab IS (2008) Studies on development of insoluble drugs as pharmaceutical suspensions by response surface methodology. Pharmazie 63(10):726–730

    CAS  Google Scholar 

  21. Cho BR, Shin S, Choi Y, Kovach J (2009) Development of a multidisciplinary optimization process for designing optimal pharmaceutical formulations with constrained experimental regions. Int J Adv Manuf Technol 44(9):841–853

    Article  Google Scholar 

  22. Massart D, Vandeginste B, Buydens L, De Jong S, Lewi P, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: Part A. Elsevier Science Pub Co.

  23. Elibol M (2002) Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium. Process Biochem 38(5):667–673

    Article  CAS  Google Scholar 

  24. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  25. Vriend GHR, van Aalten T (1997) WHAT IF manual. European Molecular Biology Laboratory, Heidelberg

    Google Scholar 

  26. Edrissi M, Razzaghi-Asl N (2007) Complexation of iron with piroxicam: evaluation via response surface methodology. Acta Chim Slov 54(4):825–833

    CAS  Google Scholar 

  27. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) Validation of molecular docking programs for virtual screening against Dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  Google Scholar 

  28. McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46(14):2895–2907

    Article  CAS  Google Scholar 

  29. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5(6):597–607

    Article  CAS  Google Scholar 

  30. Forli S, Botta M (2007) Lennard-Jones potential and dummy atom settings to overcome the AutoDock limitation in treating flexible ring systems. J Chem Inf Model 47(4):1481–1492

    Article  CAS  Google Scholar 

  31. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  32. Ghorban Dadrass L, Madadkar SA, Shafiei A, Mahmoudian M (2004) Flexible ligand docking studies of matrix metalloproteinase inhibitors using lamarkian genetic algorithm. DARU 12(1):1–10

    Google Scholar 

  33. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brand˜ao GC, da Silva EGP, Portugal LA, dos PS Reis, Souza AS, dos Santos WNL (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186

    Article  CAS  Google Scholar 

  34. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, vol 13. Wiley-Interscience, New York

    Google Scholar 

  35. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, vol 705. Wiley, New York

  36. Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M (2007) Application of fragment-based lead generation to the discovery of novel, cyclic amidine -secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 50(24):5912–5925

    Article  CAS  Google Scholar 

  37. Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RAE, Chessari G, Cowan S, Edwards PD, Frederickson M (2007) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J Med Chem 50(6):1124–1132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports of this project by Vice-chancellor Research of Shiraz University of Medical Sciences are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Miri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaghi-Asl, N., Ebadi, A., Edraki, N. et al. Response surface methodology in docking study of small molecule BACE-1 inhibitors. J Mol Model 18, 4567–4576 (2012). https://doi.org/10.1007/s00894-012-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1424-1

Keywords

Navigation