Skip to main content
Log in

Proton transfer reaction and intermolecular interactions in associates of 2,5-dihydroxy-1,8-naphthyridine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Tautomerism in monomers/dimers and association of 2,5-dihydroxy-1,8-naphthyridine was studied at the DFT level recently recommended for studies of non-covalent interactions. Studied dimers are stabilized by double and triple hydrogen-bonding. In some associates the intermolecular proton transfer may take place. Transition state related to the double proton transfer reactions were calculated and discussed in terms of energetics, changes in atomic charges upon association, aromaticity (HOMA), properties of hydrogen bond critical point (QTAIM methodology) and geometry change during this reaction. It was found that double proton transfer is supported by third hydrogen bond or by weak secondary interaction. Some protons in transition states are shared between two basic atoms, while other are covalently bound only to one of them. The said process leads to replacement of secondary interactions of attractive character to repulsive and vice versa. Overall, results suggest that in subjected compound the triple hydrogen-bonded associate may be in equilibrium with double hydrogen-bonded dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Desiraju GR (2011) Reflections on the hydrogen bond in crystal engineering. Cryst Growth Des 11:896–898. doi:10.1021/cg200100m

    Article  CAS  Google Scholar 

  2. Desiraju GR (2002) Hydrogen bridges in crystal engineering: Interactions without borders. Acc Chem Res 35:565–573. doi:10.1021/ar010054t

    Article  CAS  Google Scholar 

  3. Desiraju GR (1995) Supramolecular synthons in crystal engineering. A new organic synthesis. Angew Chem Int Ed 34:2311–2327

    Article  CAS  Google Scholar 

  4. Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658. doi:10.1021/cr9900432

    Article  CAS  Google Scholar 

  5. Eckert J, Barthes M, Klooster WT, Albinati A, Aznar R, Koetzle TF (2000) No evidence for proton transfer along the N-H…O hydrogen bond in N-methylacetamide: Neutron single crystal structure at 250 and 276 k. J Phys Chem B 105:19–24. doi:10.1021/jp000267k

    Article  Google Scholar 

  6. Katz JL, Post B (1960) The crystal structure and polymorphisc of n-methylacetamide. Acta Cryst 13:624–628

    Article  CAS  Google Scholar 

  7. Adarsh NN, Sahoo P, Dastidar P (2010) Is a crystal engineering approach useful in designing metallogels? A case study. Cryst Growth Des 10:4976–4986. doi:10.1021/cg101078f

    Article  CAS  Google Scholar 

  8. Paisner K, Zakharov LN, Doxsee KM A robust thiourea synthon for crystal engineering. Cryst Growth Des 10:3757–3762. doi:10.1021/cg100589n

  9. Burrows AD (2004) Crystal engineering using multiple hydrogen bonds. In: Mingos DMP (ed) Supramolecular assembly via hydrogen bonds. Springer, Berlin / Heidelberg, pp 55–96

    Google Scholar 

  10. Smith G, Lynch D, Byriel K, Kennard C (1997) The utility of 4-aminobenzoic acid in promotion of hydrogen bonding in crystallization processes: The structures of the cocrystals with halo and nitro subsituted aromatic compounds, and the crystal structures of the adducts with 4-nitroaniline (1:1), 4-(4-nitrobenzyl)pyridine (1:2), and (4-nitrophenyl)acetic acid (1:1). J Chem Crystallogr 27:307–317. doi:10.1007/bf02575979

    Article  CAS  Google Scholar 

  11. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794. doi:10.1073/pnas.0407607101

    Article  CAS  Google Scholar 

  12. Aakeröy CB, Schultheiss NC, Rajbanshi A, Desper J, Moore C (2008) Supramolecular synthesis based on a combination of hydrogen and halogen bonds. Cryst Growth Des 9:432–441. doi:10.1021/cg8006712

    Article  Google Scholar 

  13. Politzer P, Murray JS, Clark T (2010) Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  14. Prasang C, Nguyen HL, Horton PN, Whitwood AC, Bruce DW (2008) Trimeric liquid crystals assembled using both hydrogen and halogen bonding. Chem Comm:6164–6166

  15. Rissanen K (2008) Halogen bonded supramolecular complexes and networks. Cryst Eng Comm 10:1107–1113

    CAS  Google Scholar 

  16. Ritter SK (2009) Halogen bonding begins to fly. Chem Eng News 87:39–42

    Google Scholar 

  17. Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nature 1:74–79

    CAS  Google Scholar 

  18. Berl V, Krische MJ, Huc I, Lehn JM, Schmutz M (2000) Template-induced and molecular recognition directed hierarchical generation of supramolecular assemblies from molecular strands. Chem Eur J 6:1938–1946

    Article  CAS  Google Scholar 

  19. van Beek DJM, Spiering AJH, Peters GWM, te Nijenhuis K, Sijbesma RP (2007) Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 40:8464–8475. doi:10.1021/ma0712394

    Article  Google Scholar 

  20. Richards FM, Kundrot CE (1988) Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure. Proteins Struct Funct Genet 3:71–84

    Article  CAS  Google Scholar 

  21. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  22. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  23. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  CAS  Google Scholar 

  24. Jeffery GA, Saenger W (1994) Hydrogen bonding in proteins. In: Hydrogen bonding in biological structures. Springer-Verlag, Berlin, pp 351–394

    Chapter  Google Scholar 

  25. de Groot BL, Daura X, Mark AE, Grubmüller H (2001) Essential dynamics of reversible peptide folding: Memory-free conformational dynamics governed by internal hydrogen bonds. J Mol Biol 309:299–313

    Article  Google Scholar 

  26. Daura X, van Gunsteren WF, Rigo D, Jaun B, Seebach D (1997) Studying the stability of a helical β-heptapeptide by molecular dynamics simulations. Chem Eur J 3:1410–1417. doi:10.1002/chem.19970030907

    Article  CAS  Google Scholar 

  27. Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1998) Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 280:925–932

    Article  CAS  Google Scholar 

  28. Suárez M, Lehn J-M, Zimmerman SC, Skoulios A, Heinrich B (1998) Supramolecular liquid crystals. Self-assembly of a trimeric supramolecular disk and its self-organization into a columnar discotic mesophase. J Am Chem Soc 120:9526–9532

    Article  Google Scholar 

  29. Ośmiałowski B, Kolehmainen E, Dobosz R, Gawinecki R, Kauppinen R, Valkonen A, Koivukorpi J, Rissanen K (2010) Self-organization of 2-acylaminopyridines in the solid state and in solution. J Phys Chem A 114:10421–10426

    Article  Google Scholar 

  30. Lehn J-M (2002) Toward self-organization and complex matter. Science 295:2400–2403. doi:10.1126/science.1071063

    Article  CAS  Google Scholar 

  31. Kuykendall DW, Anderson CA, Zimmerman SC (2009) Hydrogen-bonded DeUG–DAN heterocomplex: Structure and stability and a scalable synthesis of deug with reactive functionality. Org Lett 11:61–64. doi:10.1021/ol802344w

    Article  CAS  Google Scholar 

  32. Hisamatsu Y, Fukumi Y, Shirai N, S-i I, Odashima K (2008) Five-membered heterocyclic ureas suitable for the donor-donor-acceptor hydrogen-bonding modules. Tetrahedron Lett 49:2005–2009

    Article  CAS  Google Scholar 

  33. Hisamatsu Y, Shirai N, Ikeda S-I, Odashima K (2010) A new quadruple hydrogen-bonding module based on five-membered heterocyclic urea structure. Org Lett 12:1776–1779. doi:10.1021/ol100385b

    Article  CAS  Google Scholar 

  34. Ong HC, Zimmerman SC (2006) Higher affinity quadruply hydrogen-bonded complexation with 7-deazaguanine urea. Org Lett 8:1589–1592. doi:10.1021/ol0601803

    Article  CAS  Google Scholar 

  35. Mayer MF, Nakashima S, Zimmerman SC (2005) Synthesis of a soluble ureido-naphthyridine oligomer that self-associates via eight contiguous hydrogen bonds. Org Lett 7:3005–3008

    Article  CAS  Google Scholar 

  36. Jorgensen WL, Pranata J (1990) Importance of secondary interactions in triply hydrogen bonded complexes: Guanine-cytosine vs uracil-2,6-diaminopyridine. J Am Chem Soc 112:2008–2010

    Article  CAS  Google Scholar 

  37. Ośmiałowski B, Dobosz R The influence of secondary interactions on complex stability and double proton transfer reaction in 2-[1H]-pyridone/2-hydroxypyridine dimers. J Mol Model. doi:10.1007/s00894-010-0934-y

  38. Ośmiałowski B (2009) Systematic investigation of 2,7-dihydroxy-1,8-naphthyridine dimerization - secondary interactions and tautomeric preferences calculations. J Mol Struct THEOCHEM 908:92–101

    Article  Google Scholar 

  39. Lüning U, Kühl C, Uphoff A (2002) Four hydrogen bonds - DDAA, DADA, DAAD and ADDA hydrogen bond motifs. Eur J Org Chem 2002:4063–4070

    Article  Google Scholar 

  40. Szyc Ł, Guo J, Yang M, Dreyer J, Tolstoy PM, Nibbering ETJ, Czarnik-Matusewicz B, Elsaesser T, Limbach H-H (2010) The hydrogen-bonded 2-pyridone dimer model system. 1. Combined NMR and FT-IR spectroscopy study. J Phys Chem A 114:7749–7760. doi:10.1021/jp103630w

    Google Scholar 

  41. Yang M, Szyc Ł, Dreyer J, Nibbering ETJ, Elsaesser T (2010) The hydrogen-bonded 2-pyridone dimer model system. 2. Femtosecond mid-infrared pump-probe study. J Phys Chem A 114:12195–12201. doi:10.1021/jp108096y

    Google Scholar 

  42. Müller A, Losada M, Leutwyler S (2004) Ab initio benchmark study of (2-pyridone)2, a strongly bound doubly hydrogen-bonded dimer. J Phys Chem A 108:157–165

    Article  Google Scholar 

  43. Alvares-Rua C, Garcia-Granda S, Goswami S, Mukherjee R, Dey S, Claramunt RM, Santa Maria MD, Rozas I, Jagerovic N, Alkorta I, Elguero J (2004) Multiple hydrogen bonds and tautomerism in naphthyridine derivatives. New J Chem 28:700–707

    Article  Google Scholar 

  44. Newman SG, Taylor A, Boyd RJ (2008) Factors controlling extremely strong AAA-DDD triply hydrogen-bonded complexes. Chem Phys Lett 450:210–213

    Article  CAS  Google Scholar 

  45. Blight BA, Camara-Campos A, Djurdjevic S, Kaller M, Leigh DA, McMillan FM, McNab H, Slawin AMZ (2009) AAA-DDD triple hydrogen bond complexes. J Am Chem Soc 131:14116–14122. doi:10.1021/ja906061v

    Article  CAS  Google Scholar 

  46. Ośmiałowski B, Kolehmainen E, Gawinecki R, Dobosz R, Kauppinen R (2010) Complexation of 2,6-bis(acylamino)pyridines with dipyridin-2-ylamine and 4,4-dimethylpiperidine-2,6-dione. J Phys Chem A 114:12881–12887

    Article  Google Scholar 

  47. Ośmiałowski B, Kolehmainen E, Gawinecki R, Kauppinen R, Koivukorpi J, Valkonen A (2010) Nmr and quantum chemical studies on association of 2,6-bis(acylamino)pyridines with selected imides and 2,2'-dipyridylamine. Struct Chem 21:1061–1067. doi:10.1007/s11224-010-9646-2

    Article  Google Scholar 

  48. Chien C-H, Leung M-k SuJ-K, Li G-H, Liu Y-H, Wang Y (2004) Substituent effects on pyrid-2-yl ureas toward intramolecular hydrogen bonding and cytosine complexation. J Org Chem 69:1866–1871. doi:10.1021/jo0355808

    Article  CAS  Google Scholar 

  49. Sartorius J, Schneider H-J (1996) A general scheme based on empirical increments for the prediction of hydrogen-bond associations of nucleobases and of synthetic host-guest complexes. Chem Eur J 2:1446–1452

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  51. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103–161104

    Article  Google Scholar 

  52. Zhao Y, Truhlar DG (2006) Assessment of model chemistries for noncovalent interactions. J Chem Theor Comput 2:1009–1018

    Article  CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theor Comput 4:1849–1868. doi:10.1021/ct800246v

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DG (2008) The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  55. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. Ix. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  56. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  57. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  58. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  59. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  60. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  61. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218. doi:10.1021/ja00544a007

    Article  CAS  Google Scholar 

  62. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-hartree–fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  63. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000. J Comp Chem 22:545–559. doi:10.1002/1096-987x(20010415)22:5<545::aid-jcc1027>3.0.co;2-y

    Article  Google Scholar 

  64. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  65. Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  66. Kolehmainen E, Ośmiałowski B, Krygowski TM, Kauppinen R, Nissinen M, Gawinecki R (2000) J Chem Soc Perkin Trans 2:1259–1266

    Google Scholar 

  67. Kolehmainen E, Ośmiałowski B, Nissinen M, Kauppinen R, Gawinecki R (2000) J Chem Soc Perkin Trans 2:2185–2191

    Google Scholar 

  68. Gawinecki R, Kolehmainen E, Loghmani-Khouzani H, Ośmiałowski B, Lovasz T, Rosa P (2006) Effect of π-electron delocalization on tautomeric equilibria - benzoannulated 2-phenacylpyridines. Eur J Org Chem 2006:2817–2824

    Article  Google Scholar 

  69. Ośmiałowski B, Krygowski TM, Dominikowska J, Palusiak M (2011) The effect of benzoannulation on the transition state and the proton transfer equilibrium in di(2-pyridyl)methane derivatives. New J Chem. doi:10.1039/C1NJ20108E

  70. Gawinecki R, Kuczek A, Kolehmainen E, Ośmiałowski B, Krygowski TM, Kauppinen R (2007) Influence of bond fixation in benzo-annulated n-salicylideneanilines and their ortho-C(O)X derivatives (x = CH3, NH2, OCH3) on tautomeric equilibria in solution. J Org Chem 72:5598–5607. doi:10.1021/jo070454f

    Article  CAS  Google Scholar 

  71. Krygowski TM, Zachara JE, Ośmiałowski B, Gawinecki R (2006) Topology-driven physicochemical properties of π-electron systems. 1. Does the clar rule work in cyclic pi-electron systems with the intramolecular hydrogen or lithium bond? J Org Chem 71:7678–7682

    Article  CAS  Google Scholar 

  72. Ośmiałowski B, Kolehmainen E, Nissinen M, Krygowski TM, Gawinecki R (2002) (1Z,3Z)-1,4-di(pyridin-2-yl)buta-1,3-diene-2,3-diol: The planar highly conjugated symmetrical enediol with multiple intramolecular hydrogen bonds. J Org Chem 67:3339–3345

    Article  Google Scholar 

  73. Ośmiałowski B, Kolehmainen E, Gawinecki R (2003) Identity double-proton transfer in (3Z)-3-hydroxy-1,4-di(quinolin-2-yl)-but-3-en-2-one. Chem Eur J 9:2710–2716

    Article  Google Scholar 

  74. Koch U, Popelier PLA (1995) Characterization of c-h-o hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. doi:10.1021/j100024a016

    Article  CAS  Google Scholar 

  75. Sugiyama T, Meng J, Matsuura T (2002) Intermolecular interactions in the formation of two-component molecular crystals composed of chloronitrobenzoic acids and 4-benzoylpyridine. J Mol Struct 611:53–64

    Article  CAS  Google Scholar 

  76. Majerz I, Olovsson I (2010) Influence of proton transfer on the geometry of the donor and acceptor in NHN+ hydrogen bonds. J Mol Struct 976:11–18

    Article  CAS  Google Scholar 

  77. Marx D (2006) Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. Chem Phys Chem 7:1848–1870. doi:10.1002/cphc.200600128

    Article  CAS  Google Scholar 

  78. Leffler JE (1953) Parameters for the description of transition states. Science 117:340–341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Polish Ministry of Science and Higher Education (grant no. N N204 174138) is gratefully acknowledged. The authors are very much indebted to the ICM in Warsaw for providing computer time and programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Ośmiałowski.

Supplementary material available

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ośmiałowski, B. Proton transfer reaction and intermolecular interactions in associates of 2,5-dihydroxy-1,8-naphthyridine. J Mol Model 18, 1633–1644 (2012). https://doi.org/10.1007/s00894-011-1178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1178-1

Keywords

Navigation