Skip to main content
Log in

Adsorption and spin state properties of Cr, Ni, Mo, and Pt deposited on Li+ and Na+ monovalent cation impurities of MgO (001) surface: DFT calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have analyzed, by means of density functional theory calculations and the embedded cluster model, the adsorption and spin-state properties of Cr, Ni, Mo, and Pt deposited on a MgO crystal. We considered deposition at the Mg2+ site of a defect-free surface and at Li+ and Na+ sites of impurity-containing surfaces. To avoid artificial polarization effects, clusters of moderate sizes with no border anions were embedded in simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The interaction between a transition metal atom and a surface results from a competition between Hund's rule for the adsorbed atom and the formation of a chemical bond at the interface. We found that the adsorption energies of the metal atoms are significantly enhanced by the cation impurities, and the adsorption energies of the low-spin states of spin-quenched complexes are always more favorable than those of the high-spin states. Spin polarization effects tend to preserve the spin states of the adsorbed atoms relative to those of the isolated atoms. The metal–support interactions stabilize the low-spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. Spin quenching occurs for Cr and Mo complexes at the Mg2+ site of the pure surface and at Li+ and Na+ sites of the impurity-containing surfaces. Variations of the spin-state properties of free metals and of the adsorption and spin-state properties of metal complexes are correlated with the energies of the frontier orbitals. The electrostatic potential energy curves provide further understanding of the nature of the examined properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Henrich VE, Cox PA (1994) The Surface Science of Metal Oxides. Cambridge University Press, Cambridge

    Google Scholar 

  2. Noguera C (1996) Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Freund HJ (2002) Surf Sci 500:271–299

    Article  CAS  Google Scholar 

  4. Pacchioni G (2001) Oxide Surfaces. In: Woodruff DP (ed) The Chemical Physics of Solid Surfaces, Vol 9. Elsevier, Amsterdam

    Google Scholar 

  5. Pacchioni G (2000) Surf Rev Lett 7:277–306

    CAS  Google Scholar 

  6. Valero R, Gomes JRB, Truhlar DG, Illas F (2010) J Chem Phys 132:104701(1–13)

    Article  Google Scholar 

  7. Sushko PV, Shluger AL, Baetzold RC, Catlow CRA (2000) J Phys Condens Matter 12:8257–8266

    Article  CAS  Google Scholar 

  8. Rodriguez JA, Maiti A (2000) J Phys Chem B 104:3630–3638

    Article  CAS  Google Scholar 

  9. Rodriguez JA, Jirsak T, Chaturvedi S (1999) J Chem Phys 111:8077–8087

    Article  CAS  Google Scholar 

  10. Neyman KM, Rösch N (1993) Chem Phys 177:561–570

    Article  CAS  Google Scholar 

  11. Zuo J, Panedy R, Kunz AB (1991) Phys Rev B 44:7187–7191

    Article  CAS  Google Scholar 

  12. Meng J, Vail JM, Stoenham AM, Jena P (1990) Phys Rev B 42:1156–1162

    Article  CAS  Google Scholar 

  13. Yudanov I, Pacchioni G, Neyman K, Rösch N (1997) J Phys Chem B 101:2786–2792

    Google Scholar 

  14. Giordano L, Pacchioni G, Ferrari AM, Illas F, Rösch N (2001) Surf Sci 432:213–226

    Article  Google Scholar 

  15. Giordano L, Pacchioni G, Illas F, Rösch N (2001) Surf Sci 499:73–84

    Article  Google Scholar 

  16. Lopez N, Paniagua JC, Illas F (2002) J Chem Phys 117:9445–9451

    Article  CAS  Google Scholar 

  17. Markovits A, Paniagua JC, Lopez N, Minot C, Illas F (2003) Phys Rev B 67:115417(1–6)

    Article  Google Scholar 

  18. Abdel Halim WS, Shalabi AS, Ghonaim MS (2009) Int J Quantum Chem 109:1094–1102

    Article  CAS  Google Scholar 

  19. Shalabi AS, Abdel Halim WS, Ghonaim MS (2010) Phys B 406:397–405

    Article  Google Scholar 

  20. Jaffe E, Pandey R, Kunz AB (1991) Phys Rev B 43:14030–14034

    Article  CAS  Google Scholar 

  21. Sousa C, de Graaf C, Lopez N, Harrison NM, Illas F (2004) J Phys Condens Matter 16:S2557–S2574

    Article  CAS  Google Scholar 

  22. Valero R, Gomes JRB, Truhlar DG, Illas F (2008) J Chem Phys 129:124710(1–7)

    Article  Google Scholar 

  23. Scorza E, Birkenheuer U, Pisani C (1997) J Chem Phys 107:9645–9658

    Article  CAS  Google Scholar 

  24. D'Ercole A, Giamello E, Pisani C, Ojamae L (1999) J Phys Chem 103:3872–3876

    Article  Google Scholar 

  25. Ojamae L, Pisani C (1998) J Chem Phys 109:10984–10995

    Article  CAS  Google Scholar 

  26. D'Ercole A, Pisani C (1999) J Chem Phys 111:9743–9753

    Article  Google Scholar 

  27. Shalabi AS, El-Mahdy AM (2001) Phys Lett A 281:176–186

    Article  CAS  Google Scholar 

  28. Shalabi AS (2002) J Mol Model 8:1104–1120

    Article  Google Scholar 

  29. Abdel Halim WS, Shalabi AS (2002) Solid State Commun 124:67–72

    Article  CAS  Google Scholar 

  30. Abdel Halim WS, Shalabi AS (2004) Appl Surf Sci 221:53–61

    Article  Google Scholar 

  31. Shalabi AS, Kamel MA, Ammar HY (2005) Int J Quantum Chem 103:432–448

    Article  CAS  Google Scholar 

  32. Shalabi AS, Abdel Aal S, Kamel MA, Taha HO, Ammar HY, Abdel Halim WS (2006) Chem Phys 328:8–16

    Article  CAS  Google Scholar 

  33. Abdel Halim WS, Assem MM, Shalabi AS, Soliman KA (2009) Appl Surf Sci 255:7547–7555

    Article  Google Scholar 

  34. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  37. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Lopez N, Illas F, Rösch N, Pacchioni G (1999) J Chem Phys 110:4873–4879

    Article  CAS  Google Scholar 

  40. Martyin RL, Illas F (1997) Phys Rev Lett 79:1539–1542

    Article  Google Scholar 

  41. Moreira IPR, Illas F, Martin RL (2002) Phys Rev B 65:1551021–15510214

    Google Scholar 

  42. Lopez N, Illas F (1998) J Chem Phys B 102:1430–1436

    Article  CAS  Google Scholar 

  43. Caballol R, Castell O, Illas F, Malrieu JP, Moreira IPR (1997) J Phys Chem A 101:7860–7866

    Article  CAS  Google Scholar 

  44. Stevens W, Basch H, Krauss J (1984) J Chem Phys 81:6026–6033

    Article  Google Scholar 

  45. Stevens W, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  46. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  47. Frisch MJ et al (1998) Gaussian 98. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  48. Markovits A, Skalli MK, Minot C, Pacchioni G, Lopez N, Illas F (2001) J Chem Phys 115:8172–8177

    Article  CAS  Google Scholar 

  49. Salem L, Leforestier C (1979) Surf Sci 82:390–412

    Article  CAS  Google Scholar 

  50. Mori Sanchez P, Recio JM, Silvi B, Sousa C, Martin Pendas A, Luana V, Illas F (2002) Phys Rev B 66:075103(1–6)

    Article  Google Scholar 

  51. Neyman KM, Inntam C, Nasluzov VA, Kosarev R, Rösch N (2004) Appl Phys A 78:823–828

    Article  CAS  Google Scholar 

  52. Florez E, Mondragon F, Fuentealba P, Illas F (2008) Phys Rev B 78:075426(1–7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad S. Shalabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalabi, A.S., Assem, M.M. & Soliman, K.A. Adsorption and spin state properties of Cr, Ni, Mo, and Pt deposited on Li+ and Na+ monovalent cation impurities of MgO (001) surface: DFT calculations. J Mol Model 17, 3299–3308 (2011). https://doi.org/10.1007/s00894-011-1017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1017-4

Keywords

Navigation