Skip to main content
Log in

Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MMR:

Mismatch repair

aqMutL:

Aquifex aeolicus MutL

NTD:

N-terminal domain

CTD:

C-terminal domain

DLS:

Dynamic light scattering

SAXS:

Small-angle X-ray scattering

References

  • Aarnio M et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81:214–218. doi:10.1002/(SICI)1097-0215(19990412)81:2<214:AID-IJC8>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  • Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T (2004) Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57:829–838

    Article  CAS  PubMed  Google Scholar 

  • Arana ME, Holmes SF, Fortune JM, Moon AF, Pedersen LC, Kunkel TA (2010) Functional residues on the surface of the N-terminal domain of yeast Pms1. DNA Repair (Amst) 9:448–457. doi:10.1016/j.dnarep.2010.01.010

    Article  PubMed Central  CAS  Google Scholar 

  • Ban C, Yang W (1998a) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Yang W (1998b) Structural basis for MutH activation in E. coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J 17:1526–1534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97

    Article  CAS  PubMed  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417. doi:10.1038/386414a0

    Article  CAS  PubMed  Google Scholar 

  • Correa EM, Martina MA, De Tullio L, Argarana CE, Barra JL (2011) Some amino acids of the Pseudomonas aeruginosa MutL D(Q/M)HA(X)(2)E(X)(4)E conserved motif are essential for the in vivo function of the protein but not for the in vitro endonuclease activity. DNA Repair (Amst) 10:1106–1113. doi:10.1016/j.dnarep.2011.08.007

    Article  CAS  Google Scholar 

  • Deckert G et al (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358. doi:10.1038/32831

    Article  CAS  PubMed  Google Scholar 

  • Duppatla V, Bodda C, Urbanke C, Friedhoff P, Rao DN (2009) The C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL. Biochem J 423:265–277

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    Article  CAS  PubMed  Google Scholar 

  • Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P (2004) A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 15:31–41

    Article  CAS  PubMed  Google Scholar 

  • Fishel R, Kolodner RD (1995) Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 5:382–395

    Article  CAS  PubMed  Google Scholar 

  • Fishel R et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Siede W, Walker GC, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Fujisawa T et al (2000) Small-angle X-ray scattering station at the SPring-8 RIKEN beamline. J Appl Cryst 33:797–800

    Article  CAS  Google Scholar 

  • Fukui K (2010) DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010:260512

    Article  PubMed Central  PubMed  Google Scholar 

  • Fukui K, Nishida M, Nakagawa N, Masui R, Kuramitsu S (2008) Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL. J Biol Chem 283:12136–12145

    Article  CAS  PubMed  Google Scholar 

  • Fukui K, Shimada A, Iino H, Masui R, Kuramitsu S (2011) Biochemical properties of MutL, a DNA mismatch repair endonuclease. In: Storici F (ed) DNA repair—on the pathway to fixing DNA damage and errors. Intech, Rijeka, pp 123–142

    Google Scholar 

  • Genschel J, Bazemore LR, Modrich P (2002) Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 277:13302–13311

    Article  CAS  PubMed  Google Scholar 

  • Guarne A, Junop MS, Yang W (2001) Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J 20:5521–5531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guarne A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH, Yang W (2004) Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23:4134–4145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iino H, Kim K, Shimada A, Masui R, Kuramitsu S, Fukui K (2011) Characterization of C- and N-terminal domains of Aquifex aeolicus MutL endonuclease: N-terminal domain stimulates the endonuclease activity of C-terminal domain in a zinc-dependent manner. Biosci Rep 31:309–322

    Article  CAS  Google Scholar 

  • Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  CAS  PubMed  Google Scholar 

  • Jiricny J, Nystrom-Lahti M (2000) Mismatch repair defects in cancer. Curr Opin Genet Dev 10:157–161 S0959-437X(00)00066-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLα in human mismatch repair. Cell 126:297–308

    Article  CAS  PubMed  Google Scholar 

  • Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M, Kunkel TA, Modrich P (2007) Saccharomyces cerevisiae MutLα is a mismatch repair endonuclease. J Biol Chem 282:37181–37190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim TG, Cha HJ, Lee HJ, Heo SD, Choi KY, Ku JK, Ban C (2009) Structural insights of the nucleotide-dependent conformational changes of Thermotoga maritima MutL using small-angle X-ray scattering analysis. J Biochem 145:199–206

    Article  CAS  PubMed  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Kock MHJ, Svergun DI (2003) PRIMUS—a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Cryst 34:33–41

    Article  CAS  Google Scholar 

  • Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  CAS  PubMed  Google Scholar 

  • Kuramitsu S, Hiromi K, Hayashi H, Morino Y, Kagamiyama H (1990) Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Biochemistry 29:5469–5476

    Article  CAS  PubMed  Google Scholar 

  • Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  PubMed  Google Scholar 

  • Lynch HT et al (1985) Hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). II. Biomarker Stud Cancer 56:939–951

    CAS  Google Scholar 

  • Maruya M, Sameshima M, Nemoto T, Yahara I (1999) Monomer arrangement in HSP90 dimer as determined by decoration with N and C-terminal region specific antibodies. J Mol Biol 285:903–907. doi:10.1006/jmbi.1998.2349

    Article  CAS  PubMed  Google Scholar 

  • Mauris J, Evans TC (2009) Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity. PLoS One 4:e7175

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyaki M et al (1997) Drastic genetic instability of tumors and normal tissues in Turcot syndrome. Oncogene 15:2877–2881. doi:10.1038/sj.onc.1201668

    Article  CAS  PubMed  Google Scholar 

  • Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281:30305–30309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133

    Article  CAS  PubMed  Google Scholar 

  • Morita R et al (2010) Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010:179594

    Article  PubMed Central  PubMed  Google Scholar 

  • Niedziela-Majka A, Maluf NK, Antony E, Lohman TM (2011) Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 50:7868–7880. doi:10.1021/bi200753b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  • Pillon MC et al (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39:145–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pillon MC, Miller JH, Guarne A (2011) The endonuclease domain of MutL interacts with the β sliding clamp. DNA Repair (Amst) 10:87–93

    Article  CAS  Google Scholar 

  • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci USA 107:16066–16071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75 S0092-8674(00)80314-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392. doi:10.1093/emboj/19.16.4383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pugh BF, Cox MM (1988) High salt activation of recA protein ATPase in the absence of DNA. J Biol Chem 263:76–83

    CAS  PubMed  Google Scholar 

  • Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutLα. Mol Cell 29:112–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  Google Scholar 

  • Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773

    Article  CAS  Google Scholar 

  • Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953. doi:10.1016/S0006-3495(01)76260-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svergun DI, Shtykova EV, Volkov VV, Feigin LA (2011) Small-angle X-ray scattering, synchrotron radiation, and the structure of bio- and nanosystems. Crystallogr Rep 56:725–750

    Article  CAS  Google Scholar 

  • Terasawa K, Minami M, Minami Y (2005) Constantly updated knowledge of Hsp90. J Biochem 137:443–447. doi:10.1093/jb/mvi056

    Article  CAS  PubMed  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Cryst 36:860–864

    Article  CAS  Google Scholar 

  • Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351:624–629. doi:10.1038/351624a0

    Article  CAS  PubMed  Google Scholar 

  • Wriggers W, Birmanns S (2001) Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. J Struct Biol 133:193–202. doi:10.1006/jsbi.2000.4350

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Iino H, Kim K, Kuramitsu S, Fukui K (2011) Evidence for ATP-dependent structural rearrangement of nuclease catalytic site in DNA mismatch repair endonuclease MutL. J Biol Chem 286:42337–42348. doi:10.1074/jbc.M111.277335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W (2007) Human MutLα: the jack of all trades in MMR is also an endonuclease. DNA Repair (Amst) 6:135–139

    Article  CAS  Google Scholar 

  • Yokoyama S et al (2000) Structural genomics projects in Japan. Nat Struct Biol 7(Suppl):943–945. doi:10.1038/80712

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122:693–705. doi:10.1016/j.cell.2005.06.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Kayoko Matsumoto for the experiment involving overexpression of the proteins, Aimi Osaki for the assistance of protein purifications. Authors also thank Masao Inoue for his critical reading of this manuscript. The SAXS experiments in this study were performed at BL45XU in SPring-8 (Proposals 20110033 and 20120009). This work was supported by Management Expenses Grants from the government to RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fukui.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iino, H., Hikima, T., Nishida, Y. et al. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein. Extremophiles 19, 643–656 (2015). https://doi.org/10.1007/s00792-015-0745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0745-2

Keywords

Navigation