Skip to main content
Log in

Structural characterization of a novel Ca2+-binding protein from Entamoeba histolytica: structural basis for the observed functional differences with its isoform

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel Ca2+-binding protein (EhCaBP2) was identified from the protozoan parasite Entamoeba histolytica. EhCaBP2 has 79% sequence identity with calcium-binding protein EhCaBP1. The 3D structure of EhCaBP2 was determined using multidimensional nuclear magnetic resonance spectroscopic techniques. The study reveals that the protein consists of two globular domains connected by a short flexible linker region of four residues. On comparison of the 3D structure and dynamics of EhCaBP2 with those of EhCaBP1, it is found that they vary significantly in their N-terminal domains and interdomain linker. Immunofluorescence localization experiments revealed that EhCaBP1 and EhCaBP2 may not carry out similar functions, as their cellular distribution patterns are not the same. The functional differences between the two isoforms are explained on the basis of results obtained from the structural studies. The structural variation in the interdomain linker region and the formation of functionally important hydrophobic clefts in different regions of EhCaBP1 and EhCaBP2 provide interesting insights into the differences in the functionality of these two isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tsutsumi V, Ramirez-Rosales A, Lanz-Mendoza H, Shibayama M, Chavez B, Rangel-Lopez E, Martinez-Palomo A (1992) Entamoeba histolytica: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers. Trans R Soc Trop Med Hyg 86:170–172

    Article  CAS  PubMed  Google Scholar 

  2. Bracha R, Kobiler D, Mirelman D (1982) Attachment and ingestion of bacteria by trophozoites of Entamoeba histolytica. Infect Immun 36:396–406

    CAS  PubMed  Google Scholar 

  3. Ravdin JI, Moreau F, Sullivan JA, Petri WA Jr, Mandell GL (1988) Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Infect Immun 56(6):1505–1512

    CAS  PubMed  Google Scholar 

  4. Meza I (2000) Extracellular matrix-induced signaling in Entamoeba histolytica: its role in invasiveness. Parasitol Today 16:23–28

    Article  CAS  PubMed  Google Scholar 

  5. Sahoo N, Labruyere E, Bhattacharya S, Sen P, Guillen N, Bhattacharya A (2004) Calcium binding protein 1 of the protozoan parasite Entamoeba histolytica interacts with actin and is involved in cytoskeleton dynamics. J Cell Sci 117:3625–3634

    Article  CAS  PubMed  Google Scholar 

  6. Sahoo N, Bhattacharya S, Bhattacharya A (2003) Blocking the expression of a calcium binding protein of the protozoan parasite Entamoeba histolytica by tetracycline regulatable antisense-RNA. Mol Biochem Parasitol 126(2):281–284

    Article  CAS  PubMed  Google Scholar 

  7. Sahoo N, Chakrabarty P, Yadava N, Bhattacharya S, Bhattacharya A (2000) Calcium binding protein of Entamoeba histolytica. Arch Med Res 31(4 Suppl):S57–59

    Article  CAS  PubMed  Google Scholar 

  8. Yadava N, Chandok MR, Prasad J, Bhattacharya S, Sopory SK, Bhattacharya A (1997) Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins. Mol Biochem Parasitol 84(1):69–82

    Google Scholar 

  9. Atreya HS, Sahu SC, Bhattacharya A, Chary KVR, Govil G (2001) NMR derived solution structure of an EF-hand calcium binding protein from Entamoeba histolytica. Biochemistry 40:14392–14403

    Article  CAS  PubMed  Google Scholar 

  10. Chakrabarty P, Sethi DK, Padhan N, Kaur KJ, Salunke DM, Bhattacharya S, Bhattacharya A (2004) Identification and characterization of EhCaBP2. A second member of the calcium-binding protein family of the protozoan parasite Entamoeba histolytica. J Biol Chem 279(13):12898–12908

    Article  CAS  PubMed  Google Scholar 

  11. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  12. Bax A, Ikura M (1991) An efficient three-dimensional NMR technique for correlating the proton and nitrogen backbone amide resonances with the alpha carbon of the preceding residue in uniformly 13C/15 N enriched proteins. J Biomol NMR 1:99–104

    Article  CAS  PubMed  Google Scholar 

  13. Grzesiek S, Bax A (1992) An efficient experiment for sequential backbone assignment of medium sized isotopically enriched proteins. J Magn Reson 99:201–207

    Google Scholar 

  14. Grzesiek S, Bax A (1992) Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  CAS  Google Scholar 

  15. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  16. Clubb RT, Thanabal V, Wagner G (1992) A Constant time three-dimensional triple resonance pulse scheme to correlate intraresidue HN, 15N and 13C′ chemical shifts in 15N–13C labeled proteins. J Magn Reson 97:213–217

    CAS  Google Scholar 

  17. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298

    Google Scholar 

  18. Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein: II. Structure determination and general description. J Biol Chem 248:3313–3326

    CAS  PubMed  Google Scholar 

  19. Banci L, Bertini I, Cremonini MA, Gori Savellini G, Luchinat C, Wüthrich K, Gunther P (1998) PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle dynamics. J Biomol NMR 12:553–557

    Article  CAS  PubMed  Google Scholar 

  20. Gabriel C, Frank D, Bax AD (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  21. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:29–32, 51–55

    Google Scholar 

  22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  23. Banci L, Bertini I, Gori Savellini G, Romagnoli A, Turano P, Cremonini MA, Luchinat C, Gray HB (1997) The pseudocontact shifts as constraints for energy minimization and molecular dynamics calculations on solution structures of paramagnetic metalloproteins. Protein Struct Funct Genet 29:68–76

    Article  CAS  Google Scholar 

  24. Capozzi F, Casadei F, Luchinat C (2006) EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 11:949–962

    Google Scholar 

  25. Babini E, Bertini I, Capozzi F, Luchinat C, Quattrone A, Turano M (2005) Principal component analysis of the conformational freedom within the EF-hand superfamily. J Proteome Res 4:1961–1971

    Article  CAS  PubMed  Google Scholar 

  26. Mustafi SM, Mukherjee S, Chary KV, Cavallaro G (2006) Structural basis for the observed differential magnetic anisotropic tensorial values in calcium binding proteins. Proteins 65(3):656–669

    Article  CAS  PubMed  Google Scholar 

  27. Mustafi SM, Mukherjee S, Chary KV, Del Bianco C, Luchinat C (2004) Energetics and mechanism of Ca2+ displacement by lanthanides in a calcium binding protein. Biochemistry 43(29):9320–9331

    Article  CAS  PubMed  Google Scholar 

  28. Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  CAS  Google Scholar 

  29. Lee SH, Kim CJ, Lee SM, Heo WD, Seo HY, Yoon HW, Hong CJ, Lee SY, Bahk DJ, Hwang I, Cho MJ (1995) Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem 270(37):21806–21812

    Article  CAS  PubMed  Google Scholar 

  30. Cho MJ, Vaghy PL, Kondo R, Lee SH, Davis JP, Rehl R, Heo WD, Johnson JD (1998) Reciprocal regulation of mammalian nitric oxide and calcineurin by plant calmodulin isoforms. Biochemistry 37(45):15593–15597

    Article  CAS  PubMed  Google Scholar 

  31. Ishida H, Huang H, Yarmniuk AP, Takaya Y, Vogel H (2008) The solution structures of two soyabean isoforms provides a structural basis for their selective target activation properties. J Biol Chem 283:14619–14628

    Google Scholar 

  32. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  CAS  PubMed  Google Scholar 

  33. Glaser F, Pupko T, Paz I, Bell RE, Bechor D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164

    Article  CAS  PubMed  Google Scholar 

  34. Magrose I, Graur D, Ben-Tal N, Pupke I (2004) Comparison of site-specific rate inference methods for protein sequences: empirical Bayesian methods are superior. Mol Biol Evol 21:1781–1791

    Article  Google Scholar 

  35. Pupko I, Bell RE, Mayrose I, Glaser F, Ben-Tal N (2002) Rate4site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinant within their homologues. Bioinformatics 18:S71–S77

    Article  PubMed  Google Scholar 

  36. Moorthy AK, Gopal B, Satish PR, Bhattacharya S, Bhattacharya A, Murthy MR, Surolia A (1999) Thermodynamics of target peptide recognition by calmodulin and a calmodulin analogue: implications for the role of the central linker. FEBS Lett 461(1–2):19–24

    Article  CAS  PubMed  Google Scholar 

  37. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    Article  CAS  PubMed  Google Scholar 

  38. Laskowski RA, Watson JD, Thornton JM (2005) Protein function prediction using local 3D templates. J Mol Biol 351:614–626

    Article  CAS  PubMed  Google Scholar 

  39. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graph 13:323–330

    Article  CAS  PubMed  Google Scholar 

  40. Laskowski RA, Luscombe NM, Swindells MB, Thornton JM (1996) Protein clefts in molecular recognition and function. Protein Sci 5:2438–2452

    CAS  PubMed  Google Scholar 

  41. Vogel HJ (1994) Calmodulin, a versatile calcium mediator protein. Biochem Cell Biol 72:357–376

    Article  CAS  PubMed  Google Scholar 

  42. Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147–163 induces a structural opening in human cardiac troponin-C. Biochemistry 38(26):8289–8298

    Article  CAS  PubMed  Google Scholar 

  43. Mukherji S (2006) Calcium sensor proteins: structure, dynamics and folding. PhD thesis, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai

  44. Clapperton JA, Martin SR, Smerdon SJ, Gamblin SJ, Bayley PM (2002) Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism. Biochemistry 41(50):14669–14679

    Article  CAS  PubMed  Google Scholar 

  45. Moorthy AK, Gopal B, Satish PR, Bhattacharya S, Bhattacharya A, Murthy MR, Surolia A (1999) Thermodynamics of target peptide recognition by calmodulin and a calmodulin analogue: implications for the central linker. FEBS Lett 461(1–2):19–24

    Article  CAS  PubMed  Google Scholar 

  46. Moorthy AL (2001) PhD thesis, Indian Institute of Science, Bangalore

  47. Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101(18):6841–6846

    Google Scholar 

  48. Bertini I, Gupta YK, Luchinat C, Parigi G, Peana M, Sgheri L, Yuan J (2007) Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J Am Chem Soc 129(42):12786–12794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The facilities provided by the National Facility for High Field NMR supported by the Department of Science and Technology (DST), Department of Biotechnology (DBT), Council of Science and Industrial Research (CSIR), and Tata Institute of Fundamental Research, Mumbai, India, are gratefully acknowledged. We thank Girjesh Govil, Department of Chemical Science, Tata Institute of Fundamental Research, Mumbai, for his critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandala V. R. Chary.

Additional information

S. M. Mustafi and R. B. Mutalik equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 866 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafi, S.M., Mutalik, R.B., Jain, R. et al. Structural characterization of a novel Ca2+-binding protein from Entamoeba histolytica: structural basis for the observed functional differences with its isoform. J Biol Inorg Chem 14, 471–483 (2009). https://doi.org/10.1007/s00775-008-0463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0463-7

Keywords

Navigation