Skip to main content

Characterization of Calcium-Binding Proteins from Parasitic Worms

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Parasitic diseases caused by helminths (worms) represent a major burden on humanity with hundreds of millions of people infected worldwide. However, there are relatively few drugs to treat these diseases, and resistance is emerging to some of these. Therefore, there is a pressing need to characterize proteins from helminths as potential drug targets. Calcium signalling proteins represent attractive targets due to the vital nature of properly regulated calcium-mediated signalling and the presence of unusual calcium-binding proteins in helminths. Here we present methods to characterize these proteins in terms of their ion-binding properties, drug-binding properties, and oligomeric state, including a method to correct for the effects of non-spherical proteins in analytical gel filtration. In addition we present an overview of their recombinant expression and purification and methods to predict their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás G (2004) Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J Phys Chem A 108:7261–7271

    Article  CAS  Google Scholar 

  3. Williams RJ (2006) The evolution of calcium biochemistry. Biochim Biophys Acta 1763:1139–1146

    Article  CAS  PubMed  Google Scholar 

  4. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    Article  CAS  PubMed  Google Scholar 

  5. Kawasaki H, Kretsinger RH (2017) Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Sci 26:1898–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gopalakrishna R, Anderson WB (1982) Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun 104:830–836

    Article  CAS  PubMed  Google Scholar 

  7. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  CAS  PubMed  Google Scholar 

  8. Roufogalis BD, Minocherhomjee AM, Al-Jobore A (1983) Pharmacological antagonism of calmodulin. Can J Biochem Cell Biol 61:927–933

    Article  CAS  PubMed  Google Scholar 

  9. Hait WN (1987) Targeting calmodulin for the development of novel cancer chemotherapeutic agents. Anticancer Drug Des 2:139–149

    CAS  PubMed  Google Scholar 

  10. Kang S, Hong J, Lee JM, Moon HE, Jeon B, Choi J, Yoon NA, Paek SH, Roh EJ, Lee CJ, Kang SS (2017) Trifluoperazine, a Well-Known Antipsychotic, Inhibits Glioblastoma Invasion by Binding to Calmodulin and Disinhibiting Calcium Release Channel IP3R. Mol Cancer Ther 16:217–227

    Article  CAS  PubMed  Google Scholar 

  11. Coles GC (1979) The effect of praziquantel on Schistosoma mansoni. J Helminthol 53:31–33

    Article  CAS  PubMed  Google Scholar 

  12. Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM (2017) Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother 61:e02582–e02516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furtado LF, de Paiva Bello AC, Rabelo EM (2016) Benzimidazole resistance in helminths: from problem to diagnosis. Acta Trop 162:95–102

    Article  CAS  PubMed  Google Scholar 

  14. Carmichael I, Visser R, Schneider D, Soll M (1987) Haemonchus contortus resistance to ivermectin. J S Afr Vet Assoc 58(2):93

    CAS  PubMed  Google Scholar 

  15. Vieira LS, Berne ME, Cavalcante AC, Costa CA (1992) Haemonchus contortus resistance to ivermectin and netobimin in Brazilian sheep. Vet Parasitol 45(1–2):111–116

    Article  CAS  PubMed  Google Scholar 

  16. Blasco B, Leroy D, Fidock DA (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baker N, de Koning HP, Maser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29:110–118

    Article  CAS  PubMed  Google Scholar 

  18. Takala-Harrison S, Laufer MK (2015) Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci 1342:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL, Keiser J, Hatz CF (2012) Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med Wkly 142:w13727

    PubMed  Google Scholar 

  20. Murrell KD (1991) Economic losses resulting from food-borne parasitic zoonoses. Southeast Asian J Trop Med Public Health 22(Suppl):377–381

    PubMed  Google Scholar 

  21. Russell SL, Timson DJ (2014) Calcium binding proteins in the liver fluke, Fasciola hepatica. In: New developments in calcium signaling research. Nova Science Publishers, pp 89–104

    Google Scholar 

  22. Fraga H, Faria TQ, Pinto F, Almeida A, Brito RM, Damas AM (2010) FH8--a small EF-hand protein from Fasciola hepatica. FEBS J 277:5072–5085

    Article  CAS  PubMed  Google Scholar 

  23. Hu S, Law P, Lv Z, Wu Z, Fung MC (2008) Molecular characterization of a calcium-binding protein SjCa8 from Schistosoma japonicum. Parasitol Res 103:1047–1053

    Article  PubMed  Google Scholar 

  24. Thomas CM, Timson DJ (2016) A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 44:1005–1010

    Article  CAS  PubMed  Google Scholar 

  25. Fitzsimmons CM, Jones FM, Stearn A, Chalmers IW, Hoffmann KF, Wawrzyniak J, Wilson S, Kabatereine NB, Dunne DW (2012) The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses. PLoS Negl Trop Dis 6:e1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Banford S, Drysdale O, Hoey EM, Trudgett A, Timson DJ (2013) FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Biochimie 95:751–758

    Article  CAS  PubMed  Google Scholar 

  27. Cheung S, Thomas CM, Timson DJ (2016) FhCaBP1 (FH22): a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Exp Parasitol 170:109–115

    Article  CAS  PubMed  Google Scholar 

  28. Orr R, Kinkead R, Newman R, Anderson L, Hoey EM, Trudgett A, Timson DJ (2012) FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitol Res 111:1707–1713

    Article  PubMed  Google Scholar 

  29. Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ (2015) Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas CM, Timson DJ (2015) FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 142:1375–1386

    Article  CAS  PubMed  Google Scholar 

  31. Subpipattana P, Grams R, Vichasri-Grams S (2012) Analysis of a calcium-binding EF-hand protein family in Fasciola gigantica. Exp Parasitol 130:364–373

    Article  CAS  PubMed  Google Scholar 

  32. Vichasri-Grams S, Subpipattana P, Sobhon P, Viyanant V, Grams R (2006) An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Mol Biochem Parasitol 146:10–23

    Article  CAS  PubMed  Google Scholar 

  33. Kim YJ, Yoo WG, Lee MR, Kang JM, Na BK, Cho SH, Park MY, Ju JW (2017) Molecular and structural characterization of the tegumental 20.6-kDa protein in Clonorchis sinensis as a potential druggable target. Int J Mol Sci 18:557

    Article  PubMed Central  Google Scholar 

  34. Senawong G, Laha T, Loukas A, Brindley PJ, Sripa B (2012) Cloning, expression, and characterization of a novel Opisthorchis viverrini calcium-binding EF-hand protein. Parasitol Int 61:94–100

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen TH, Thomas CM, Timson DJ, van Raaij MJ (2016) Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain. Parasitol Res 115:2879–2886

    Article  PubMed  Google Scholar 

  36. Jo CH, Son J, Kim S, Oda T, Kim J, Lee MR, Sato M, Kim HT, Unzai S, Park SY, Hwang KY (2017) Structural insights into a 20.8-kDa tegumental-allergen-like (TAL) protein from Clonorchis sinensis. Sci Rep 7:1764

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu J, Ren Y, Xu X, Chen J, Li Y, Gan W, Zhang Z, Zhan H, Hu X (2014) Schistosoma japonicum tegumental protein 20.8, role in reproduction through its calcium binding ability. Parasitol Res 113:491–497

    Article  PubMed  Google Scholar 

  38. Durst RA, Staples BR (1972) Tris/tris-HCl: a standard buffer for use in the physiologic pH range. Clin Chem 18(3):206–208

    CAS  PubMed  Google Scholar 

  39. Lewis FA, Liang YS, Raghavan N, Knight M (2008) The NIH-NIAID schistosomiasis resource center. PLoS Negl Trop Dis 2(7):e267

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  41. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  42. Ortega A, Amoros D, Garcia de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:W469–W473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(Suppl 9):114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  48. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Eickholt J, Cheng J (2011) APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics 27:1715–1716

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim S, Cullis DN, Feig LA, Baleja JD (2001) Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry 40(23):6776–6785

    Article  CAS  PubMed  Google Scholar 

  52. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  53. Ornstein L, Davis BJ (1964) Disc electrophoresis-I: background and theory. Ann N Y Acad Sci 121:321–349

    Article  CAS  PubMed  Google Scholar 

  54. McLellan T (1982) Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem 126:94–99

    Article  CAS  PubMed  Google Scholar 

  55. Atcheson E, Hamilton E, Pathmanathan S, Greer B, Harriott P, Timson DJ (2011) IQ-motif selectivity in human IQGAP2 and IQGAP3:binding of calmodulin and myosin essential light chain. Biosci Rep 31:371–379

    Article  PubMed  Google Scholar 

  56. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  CAS  PubMed  Google Scholar 

  57. Wu FC, Laskowski M (1956) The effect of calcium on chymotrypsins alpha and B. Biochim Biophys Acta 19:110–115

    Article  CAS  PubMed  Google Scholar 

  58. Squire PG, Moser P, O'Konski CT (1968) The hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry 7:4261–4272

    Article  CAS  PubMed  Google Scholar 

  59. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  60. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54

    Article  CAS  PubMed  Google Scholar 

  61. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CMT thanks the Department of Employment and Learning Northern Ireland (DELNI, UK) for a PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomas, C.M., Timson, D.J. (2019). Characterization of Calcium-Binding Proteins from Parasitic Worms. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_39

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics