Skip to main content
Log in

An approximate secular equation of Rayleigh waves in an isotropic elastic half-space coated with a thin isotropic elastic layer

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the propagation of Rayleigh waves in an isotropic elastic half-space coated with a thin isotropic elastic layer. The contact between the layer and the half-space is assumed to be welded. The main purpose of the paper is to establish an approximate secular equation of the wave. By using the effective boundary condition method, an approximate secular equation of fourth order in terms of the dimensionless thickness of the layer is derived. It is shown that this approximate secular equation has high accuracy. From the secular equation obtained, an approximate formula of third order for the velocity of Rayleigh waves is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makarov S., Chilla E., Frohlich H.J.: Determination of elastic constants of thin films from phase velocity dispersion of different surface acoustic wave modes. J. Appl. Phys. 78, 5028–5034 (1995)

    Article  Google Scholar 

  2. Every A.G.: Measurement of the near-surface elastic properties of solids and thin supported films. Meas. Sci. Technol. 13, R21–R39 (2002)

    Article  Google Scholar 

  3. Kuchler K., Richter E.: Ultrasonic surface waves for studying the properties of thin films. Thin Solid Films 315, 29–34 (1998)

    Article  Google Scholar 

  4. Hess P., Lomonosov A.M., Mayer A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)

    Article  Google Scholar 

  5. Achenbach J.D., Keshava S.P.: Free waves in a plate supported by a semi-infinite continuum. J. Appl. Mech. 34, 397–404 (1967)

    Article  Google Scholar 

  6. Tiersten H.F.: Elastic surface waves guided by thin films. J. Appl. Phys. 46, 770–789 (1969)

    Article  Google Scholar 

  7. Bovik P.: A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. J. Appl. Mech. 63, 162–167 (1996)

    Article  Google Scholar 

  8. Rokhlin S.I., Huang W.: Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids: exact and asymptotic-boundary-condition methods. J. Acoust. Soc. Am. 92, 1729–1742 (1992)

    Article  Google Scholar 

  9. Rokhlin S.I., Huang W.: Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids. II. Second-order asymptotic boundary conditions. J. Acoust. Soc. Am. 94, 3405–3420 (1993)

    Article  Google Scholar 

  10. Niklasson A.J., Datta S.K., Dunn M.L.: On approximating guided waves in thin anisotropic coatings by means of effective boundary conditions. J. Acoust. Soc. Am. 108, 924–933 (2000)

    Article  Google Scholar 

  11. Benveniste Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54, 708–734 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Steigmann D.J., Ogden R.W.: Surface waves supported by thin-film/substrate interactions. IMA J. Appl. Math. 72, 730–747 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ting T.C.T.: Steady waves in an anisotropic elastic layer attached to a half-space or between two half-spaces-a generalization of love waves and Stoneley waves. Math. Mech. Solids 14, 52–71 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vinh P.C., Linh N.T.K.: An approximate secular equation of Rayleigh waves propagating in an orthotropic elastic half-space coated by a thin orthotropic elastic layer. Wave Motion 49, 681–689 (2012)

    Article  MathSciNet  Google Scholar 

  15. Vinh P.C., Linh N.T.K.: An approximate secular equation of generalized Rayleigh waves in pre-stressed compressible elastic solids. Int. J. Non-Linear Mech. 50, 91–96 (2013)

    Article  Google Scholar 

  16. Vinh P.C., Anh V.T.N.: Rayleigh waves in an orthotropic elastic half-space coated by a thin orthotropic elastic layer with smooth contact. Int. J. Eng. Sci. 75, 154–164 (2014)

    Article  Google Scholar 

  17. Vinh, P.C., Anh, V.T.N., Thanh, V.P.: Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact. Wave Motion (2014), http://dx.doi.org/10.1016/j.wavemoti.2013.11.008

  18. Malischewsky P.: Surface Waves and Discontinuities. Elsevier, Amsterdam (1987)

    Google Scholar 

  19. Godoy E., Duran M., Nedelec J.-C.: On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion 49, 585–594 (2012)

    Article  MathSciNet  Google Scholar 

  20. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motion isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  21. Touratier M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 901–916 (1991)

    Article  MATH  Google Scholar 

  22. Muller P., Touratier M.: On the so-called variational consistency of plate models, I. Indefinite plates: evaluation of dispersive behaviour. J. Sound Vib. 188, 515–527 (1996)

    Article  MathSciNet  Google Scholar 

  23. Stephen N.G.: Mindlin plate theory: best shear coefficient and higher spectra validity. J. Sound Vib. 202, 539–553 (1997)

    Article  Google Scholar 

  24. Vinh P.C., Seriani G.: Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Wave Motion 46, 427–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vinh P.C., Seriani G.: Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Appl. Math. Compt. 215, 3515–3525 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  27. Vinh P.C., Ogden R.W.: On formulas for the Rayleigh wave speed. Wave Motion 39, 191–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malischewsky P.G.: A note on Rayleigh-wave velocities as a function of the material parameters. Geofis. Int. 45, 507–509 (2004)

    Google Scholar 

  29. Vinh P.C., Malischewsky P.G.: An improved approximation of Bergmann’s form for the Rayleigh wave velocity. Ultrasonic 47, 49–54 (2007)

    Article  Google Scholar 

  30. Vinh P.C., Malischewsky P.G.: An approach for obtaining approximate formulas for the Rayleigh wave velocity. Wave Motion 44, 549–562 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vinh P.C., Malischewsky P.G.: Improved approximations of the Rayleigh wave velocity. J. Thermoplast. Compos. Mater. 21, 337–352 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Vinh Pham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, C.V., Vu, T.N.A. An approximate secular equation of Rayleigh waves in an isotropic elastic half-space coated with a thin isotropic elastic layer. Acta Mech 225, 2539–2547 (2014). https://doi.org/10.1007/s00707-014-1090-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1090-8

Keywords

Navigation