Skip to main content
Log in

Interactions of fluorescent dye SYBR Green I with natural and 7-deazaguanine-modified DNA studied by fluorescence and electrochemical methods

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

SYBR Green I (SG) is a fluorescent dye applied in various techniques of DNA analysis, including fluorescent staining of electrophoretic gels, quantitative polymerase chain reaction, etc. SG binds selectively to double-stranded DNA via intercalation and minor groove interactions, resulting in a considerable enhancement of fluorescence of the dye. Modification of DNA by partial or full replacement of natural purine nucleobase guanine (G) with its synthetic analog 7-deazaguanine (G*) or its derivatives was shown to cause the SG fluorescence quenching. In this paper, we present a comparative study of interactions of SG with natural DNA fragments and with DNA fragments modified with G* by means of fluorescence and electrochemical methods. Competition between unmodified (forming strongly fluorescent complex with SG) and fully G*-modified (not contributing significantly to overall fluorescence signal) DNA fragments for the dye was studied via changes in the fluorescence intensity. In addition, association interactions of natural or G*-modified DNA with SG in solution were monitored by adsorptive transfer stripping square wave voltammetry at a pyrolytic graphite electrode using a signal of SG electrooxidation. We show that SG binds both natural and G*-modified DNA with similar apparent affinity and selectivity for the double-stranded DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin X, Dong F, Singer VL (1996) FASEB J 10:751

    Google Scholar 

  2. Kiltie AE, Ryan AJ (1997) Nucl Acids Res 25:2945

    Article  CAS  Google Scholar 

  3. Vitzthum F, Geiger G, Bisswanger H, Brunner H, Bernhagen J (1999) Anal Biochem 276:59

    Article  CAS  Google Scholar 

  4. Rengarajan K, Cristol SM, Mehta M, Nickerson JM (2002) Mol Vis 8:416

    CAS  Google Scholar 

  5. Iida R, Yasuda T, Tsubota E, Nakashima Y, Sawazaki K, Aoyama M, Matsuki T, Kishi K (1998) Electrophoresis 19:2416

    Article  CAS  Google Scholar 

  6. Wege H, Chui MS, Le HT, Tran JM, Zern MA (2003) Nucl Acids Res 31:e3

    Article  Google Scholar 

  7. Iwabuchi S, Muramatsu H, Chiba N, Kinjo Y, Murakami Y, Sakaguchi T, Yokoyama K, Tamiya E (1997) Nucl Acids Res 25:1662

    Article  CAS  Google Scholar 

  8. Brussaard CPD, Marie D, Bratbak G (2000) J Virol Methods 85:175

    Article  CAS  Google Scholar 

  9. Tamburini S, Foladori P, Ferrentino G, Spilimbergo S, Jousson O (2014) J Appl Microbiol 117:440

    Article  CAS  Google Scholar 

  10. Qu LL, Li YQ, Zheng B, He CY, He L, Li YX (2009) Chem J Chin Univ 30:1121

    CAS  Google Scholar 

  11. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) Biotechniques 22:176

    CAS  Google Scholar 

  12. Simpson D, Feeney S, Boyle C, Stitt A (2000) Mol Vis 6:178

    CAS  Google Scholar 

  13. Balsam J, Rasooly R, Bruck HA, Rasooly A (2014) Biosens Bioelectron 51:1

    Article  CAS  Google Scholar 

  14. Latimer LJP, Lee JS (1991) J Biol Chem 266:13849

    CAS  Google Scholar 

  15. Kelley SO, Barton JK (1998) Chem Biol 5:413

    Article  CAS  Google Scholar 

  16. Noothi SK, Kombrabail M, Rao BJ, Krishnamoorthy G (2010) J Fluoresc 20:37

    Article  CAS  Google Scholar 

  17. Fukui K, Tanaka K (1998) Angew Chem Int Edit 37:158

    Article  CAS  Google Scholar 

  18. Manoharan M, Tivel KL, Zhao M, Nafisi K, Netzel TL (1995) J Phys Chem 99:17461

    Article  CAS  Google Scholar 

  19. Kang HK, Shin EJ, Shim SC (1992) J Photoch Photobio B 13:19

    Article  CAS  Google Scholar 

  20. Melavanki RM, Patil NR, Patil HD, Kusanur RA, Kadadevaramath JS (2011) Indian J Pure Appl Phys 49:748

    CAS  Google Scholar 

  21. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Nucl Acids Res 32:e103

    Article  Google Scholar 

  22. Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD (2012) J Fluoresc 22:1189

    Article  CAS  Google Scholar 

  23. Seidel CAM, Schulz A, Sauer MHM (1996) J Phys Chem 100:5541

    Article  CAS  Google Scholar 

  24. Ioannou AK, Alexiadou DK, Kouidou SA, Voulgaropoulos AN, Girousi ST (2010) Anal Chim Acta 657:163

    Article  CAS  Google Scholar 

  25. Oliveira SCB, Nascimento VB (2013) Electroanalysis 25:2117

    Article  CAS  Google Scholar 

  26. Cerven J, Havran L, Pecinka P, Fojta M (2015) Electroanalysis. doi:10.1002/elan.201500177

    Google Scholar 

  27. Fojta M, Havran L, Pivonkova H, Horakova P, Hocek M (2011) Curr Org Chem 15:2936

    Article  CAS  Google Scholar 

  28. Ganguly M, Wang F, Kaushik M, Stone MP, Marky LA, Gold B (2007) Nucl Acids Res 35:6181

    Article  CAS  Google Scholar 

  29. Gros J, Rosu F, Amrane S, De Cian A, Gabelica V, Lacroix L, Mergny JL (2007) Nucl Acids Res 35:3064

    Article  CAS  Google Scholar 

  30. Palecek E (1991) Crit Rev Biochem Mol 26:151

    Article  CAS  Google Scholar 

  31. Menova P, Dziuba D, Gueixens-Gallardo P, Jurkiewicz P, Hof M, Hocek M (2015) Bioconjugate Chem 26:361

    Article  CAS  Google Scholar 

  32. Pivonkova H, Horakova P, Fojtova M, Fojta M (2010) Anal Chem 82:6807

    Article  CAS  Google Scholar 

  33. Li H, Peng XH, Seela F (2004) Bioorg Med Chem Lett 14:6031

    Article  CAS  Google Scholar 

  34. Vrabel M, Horakova P, Pivonkova H, Kalachova L, Cernocka H, Cahova H, Pohl R, Sebest P, Havran L, Hocek M, Fojta M (2009) Chem Eur J 15:1144

    Article  CAS  Google Scholar 

  35. Palecek E, Bartosik M (2012) Chem Rev 112:3427

    Article  CAS  Google Scholar 

  36. Vacek J, Havran L, Fojta M (2009) Electroanalysis 21:2139

    Article  CAS  Google Scholar 

  37. Hupp TR, Meek DW, Midgley CA, Lane DP (1992) Cell 71:875

    Article  CAS  Google Scholar 

  38. Fojta M, Havran L, Kizek R, Billova S (2002) Talanta 56:867

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (grant P206/11/1638 to M. F. and P206/12/2378 to L. H.) and by the ASCR (RVO 68081707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Fojta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudová, Z., Špaček, J., Havran, L. et al. Interactions of fluorescent dye SYBR Green I with natural and 7-deazaguanine-modified DNA studied by fluorescence and electrochemical methods. Monatsh Chem 147, 13–20 (2016). https://doi.org/10.1007/s00706-015-1578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1578-5

Keywords

Navigation