Skip to main content

Advertisement

Log in

Conditioning training and retrieval increase phospholipase A2 activity in the cerebral cortex of rats

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

In rats, phospholipase A2 (PLA2) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA2 is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA2 in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA2 activity was increased just in the parietal cortex. These findings suggest that PLA2 activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA2 activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA2 activity may offer new treatment strategies for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrisqueta-Gomez J, Canali F, Vieira VL, Aguiar AC, Ponce CS, Brucki SM, Bueno OF (2004) A longitudinal study of a neuropsychological rehabilitation program in Alzheimer’s disease. Arq Neuropsiquiatr 62:778–783

    PubMed  Google Scholar 

  • Akiba S, Mizunaga S, Kume K, Hayama M, Sato T (1999) Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J Biol Chem 274:19906–19912

    Article  PubMed  CAS  Google Scholar 

  • Alonso M, Viola H, Izquierdo I, Medina JH (2002) Aversive experiences are associated with a rapid and transient activation of ERKs in the rat hippocampus. Neurobiol Learn Mem 77:119–124

    Article  PubMed  Google Scholar 

  • Alonso M, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2003) Memory formation requires p38MAPK activity in the rat hippocampus. Neuroreport 14:1989–1992

    Article  PubMed  CAS  Google Scholar 

  • Avila R, Bottino CM, Carvalho IA, Santos CB, Seral C, Miotto EC (2004) Neuropsychological rehabilitation of memory deficits and activities of daily living in patients with Alzheimer’s disease: a pilot study. Braz J Med Biol Res 37(11):1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Barros DM, Izquierdo LA, Mello e Souza T, Ardenghi PG, Pereira P, Medina JH, Izquierdo I (2000) Molecular signalling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behav Brain Res 114:183–192

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Massicotte G, Hauge S (1991) Opposite effects of phospholipase A2 on [3H]AMPA binding in adult and neonatal membranes. Brain Res Dev Brain Res 61:265–267

    Article  PubMed  CAS  Google Scholar 

  • Belleville S, Gilbert B, Fontaine F, Gagnon L, Ménard E, Gauthier S (2006) Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement Geriatr Cogn Disord 22:486–499

    Article  PubMed  Google Scholar 

  • Bernabeu R, Cammarota M, Izquierdo I, Medina JH (1997) Involvement of hippocampal AMPA glutamate receptor changes and the cAMP/protein kinase A/CREB-P signalling pathway in memory consolidation of an avoidance task in rats. Braz J Med Biol Res 30:961–965

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu R, Izquierdo I, Cammarota M, Jerusalinsky D, Medina JH (1995) Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Brain Res 685:163–168

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Lahsaini A, Baudry M, Massicotte G (1993) The phospholipase A2 inhibitor bromophenacyl bromide prevents the depolarization-induced increase in [3H]AMPA binding in rat brain synaptoneurosomes. Brain Res 628:340–344

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Lahsaini A, Massicotte G (1994) Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Chabot C, Gagne J, Baudry M, Massicotte G (1995) Melittin increases AMPA receptor affinity in rat brain synaptoneurosomes. Brain Res 671:195–200

    Article  PubMed  CAS  Google Scholar 

  • Bonini JS, Cammarota M, Kerr DS, Bevilaqua LR, Izquierdo I (2005) Inhibition of PKC in basolateral amygdala and posterior parietal cortex impairs consolidation of inhibitory avoidance memory. Pharmacol Biochem Behav 80:63–67

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, Izquierdo I, Wolfman C, Levi de Stein M, Bernabeu R, Jerusalinsky D, Medina JH (1995) Inhibitory avoidance training induces rapid and selective changes in 3[H]AMPA receptor binding in the rat hippocampal formation. Neurobiol Learn Mem 64:257–264

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, Bernabeu R, Izquierdo I, Medina JH (1996) Reversible changes in hippocampal 3H-AMPA binding following inhibitory avoidance training in the rat. Neurobiol Learn Mem 66:85–88

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, Paratcha G, Levi de Stein M, Bernabeu R, Izquierdo I, Medina JH (1997) B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training. Neurochem Res 22:499–505

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, Bernabeu R, Levi De Stein M, Izquierdo I, Medina JH (1998) Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J NeuroSci 10:2669–2676

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, de Stein ML, Paratcha G, Bevilaqua LR, Izquierdo I, Medina JH (2000) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochem Res 25:567–572

    Article  PubMed  CAS  Google Scholar 

  • Catania MV, Hollingsworth Z, Penney JB, Young AB (1993) Phospholipase A2 modulates different subtypes of excitatory amino acid receptors: autoradiographic evidence. J Neurochem 60:236–245

    Article  PubMed  CAS  Google Scholar 

  • Chabot C, Gagne J, Giguere C, Bernard J, Baudry M, Massicotte G (1998) Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Engle SJ, Seilhamer JJ, Tischfield JA (1994) Cloning and recombinant expression of a novel human low molecular weight Ca2+-dependent phospholipase A2. J Biol Chem 269:2365–2368

    PubMed  CAS  Google Scholar 

  • Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR (2005) PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 8:925–931

    PubMed  CAS  Google Scholar 

  • Clare L, Wilson BA, Carter G, Roth I, Hodges JR (2002) Relearning face-name associations in early Alzheimer’s disease. Neuropsychology 16:538–547

    Article  PubMed  Google Scholar 

  • Clements MP, Rose SP (1996) Time-dependent increase in release of arachidonic acid following passive avoidance training in the day-old chick. J Neurochem 67:1317–1323

    PubMed  CAS  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  • Dennis EA (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci 22:1–2

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69:889–901

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Litsky ML, Farooqui T, Horrocks LA (1999) Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 49:139–153

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ikegaya Y, Nishiyama N, Matsuki N (2000) Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83:277–278

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Maras A, Cairns NJ, Levy R, Forstl H (1995) Decreased phospholipase A2 activity in Alzheimer brains. Biol Psychiatry 37:13–17

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 246:129–131

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Forlenza OV, Talib LL, Barbosa NR, Bottino CM (2004) Platelet phospholipase A2 activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm 111:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault SB, Chabot C, Gratton JP, Poirier J (2004) The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J Biol Chem 279:356–362

    Article  PubMed  CAS  Google Scholar 

  • Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 275:39823–39826

    Article  PubMed  CAS  Google Scholar 

  • Gordon RD, Leighton IA, Campbell DG, Cohen P, Creaney A, Wilton DC, Masters DJ, Ritchie GA, Mott R, Taylor IW, Bundell KR, Douglas L, Morten J, Needham M (1996) Cloning and expression of cystolic phospholipase A2 (cPLA2) and a naturally occurring variant. Phosphorylation of Ser505 of recombinant cPLA2 by p42 mitogen-activated protein kinase results in an increase in specific activity. Eur J Biochem 238:690–697

    Article  PubMed  CAS  Google Scholar 

  • Holscher C (1995) Prostaglandins play a role in memory consolidation in the chick. Eur J Pharmacol 294:253–259

    Article  PubMed  CAS  Google Scholar 

  • Holscher C, Rose SP (1994) Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61:225–232

    Article  PubMed  CAS  Google Scholar 

  • Holscher C, Canevari L, Richter-Levin G (1995) Inhibitors of PLA2 and NO synthase cooperate in producing amnesia of a spatial task. Neuroreport 6:730–732

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo I, Quillfeldt JA, Zanatta MS, Quevedo J, Schaeffer E, Schmitz PK, Medina JH (1997) Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for IA in rats. Eur J NeuroSci 9:786–793

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo I, Izquierdo LA, Barros DM, Mello e Souza T, de Souza MM, Quevedo J, Rodrigues C, Sant’Anna MK, Madruga M, Medina JH (1998) Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Pharmacol 9:421–427

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo LA, Barros DM, da Costa JC, Furini C, Zinn C, Cammarota M, Bevilaqua LR, Izquierdo I (2007) A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiol Learn Mem 88:160–166

    Article  PubMed  Google Scholar 

  • Izumi Y, Zarrin AR, Zorumski CF (2000) Arachidonic acid rescues hippocampal long-term potentiation blocked by group I metabotropic glutamate receptor antagonists. Neuroscience 100:485–491

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077

    Article  PubMed  CAS  Google Scholar 

  • Larsson Forsell PK, Kennedy BP, Claesson HE (1999) The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene. Eur J Biochem 262:575–585

    Article  PubMed  CAS  Google Scholar 

  • Larsson PK, Claesson HE, Kennedy BP (1998) Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 273:207–214

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz JW, Salinska E, Wroblewski JT (1992) NMDA receptor-mediated arachidonic acid release in neurons: role in signal transduction and pathological aspects. Adv Exp Med Biol 318:73–89

    PubMed  CAS  Google Scholar 

  • Liang KC, Hu SJ, Chang SC (1996) Formation and retrieval of inhibitory avoidance memory: differential roles of glutamate receptors in the amygdala and medial prefrontal cortex. Chin J Physiol 39:155–166

    PubMed  CAS  Google Scholar 

  • Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rowebrough NJ, Farr LA, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mancuso DJ, Jenkins CM, Gross RW (2000) The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A2. J Biol Chem 275:9937–9945

    Article  PubMed  CAS  Google Scholar 

  • Martel MA, Patenaude C, Menard C, Alaux S, Cummings BS, Massicotte G (2006) A novel role for calcium-independent phospholipase A in α-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation. Eur J NeuroSci 23:505–513

    Article  PubMed  Google Scholar 

  • Massicotte G, Baudry M (1990) Modulation of DL-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/quisqualate receptors by phospholipase A2 treatment. Neurosci Lett 118:245–248

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G, Vanderklish P, Lynch G, Baudry M (1991) Modulation of DL-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation? Proc Natl Acad Sci USA 88:1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Mello E, Souza T, Vianna MR, Rodrigues C, Quevedo J, Moleta BA, Izquierdo I (2000) Involvement of the medial precentral prefrontal cortex in memory consolidation for inhibitory avoidance learning in rats. Pharmacol Biochem Behav 66:615–622

    Article  Google Scholar 

  • Miller B, Sarantis M, Traynelis SF, Attwell D (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355:722–725

    Article  PubMed  CAS  Google Scholar 

  • Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258:139–142

    Article  PubMed  CAS  Google Scholar 

  • Muthalif MM, Hefner Y, Canaan S, Harper J, Zhou H, Parmentier JH, Aebersold R, Gelb MH, Malik KU (2001) Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2). J Biol Chem 276:39653–39660

    Article  PubMed  CAS  Google Scholar 

  • Nemenoff RA, Winitz S, Qian NX, Van Putten V, Johnson GL, Heasley LE (1993) Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem 268:1960–1964

    PubMed  CAS  Google Scholar 

  • Nishizaki T, Matsuoka T, Nomura T, Enikolopov G, Sumikawa K (1999) Arachidonic acid potentiates currents through Ca2+-permeable AMPA receptors by interacting with a CaMKII pathway. Molec Brain Res 67:184–189

    Article  PubMed  CAS  Google Scholar 

  • Owada Y, Tominaga T, Yoshimoto T, Kondo H (1994) Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Brain Res Mol Brain Res 25:364–368

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pellerin L, Wolfe LS (1991) Release of arachidonic acid by NMDA-receptor activation in the rat hippocampus. Neurochem Res 16:983–989

    Article  PubMed  CAS  Google Scholar 

  • Pickard RT, Strifler BA, Kramer RM, Sharp JD (1999) Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem 274:8823–8831

    Article  PubMed  CAS  Google Scholar 

  • Quillfeldt JA, Zanatta MS, Schmitz PK, Quevedo J, Schaeffer E, Lima JB, Medina JH, Izquierdo I (1996) Different brain areas are involved in memory expression at different times from training. Neurobiol Learn Mem 66:97–101

    Article  PubMed  CAS  Google Scholar 

  • Rapp S, Brenes G, Marsh AP (2002) Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging Ment Health 6:5–11

    Article  PubMed  CAS  Google Scholar 

  • Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793

    PubMed  CAS  Google Scholar 

  • Sanfeliu C, Hunt A, Patel AJ (1990) Exposure to N-methyl-d-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res 526:241–248

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Ishida T, Irifune M, Tanaka K, Hirate K, Nakamura N, Nishikawa T (2007) Effect of NC-1900, an active fragment analog of arginine vasopressin, and inhibitors of arachidonic acid metabolism on performance of a passive avoidance task in mice. Eur J Pharmacol 560:36–41

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2005) Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berl) 181:392–400

    Article  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2007) Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. J Neural Transm 114:379–385

    Article  PubMed  CAS  Google Scholar 

  • Stella N, Pellerin L, Magistretti PJ (1995) Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. J Neurosci 15:3307–3317

    PubMed  CAS  Google Scholar 

  • Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii N, Kawamoto K, Hanasaki K (2000) Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A2s. J Biol Chem 275:5785–5793

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, Wolf BA (2000) A frontal variant of Alzheimer’s disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 37:17–31

    Article  PubMed  CAS  Google Scholar 

  • Talib LL, Yassuda MS, Diniz BSO, Forlenza OV, Gattaz WF (2008) Cognitive training increases platelet PLA2 activity in healthy elderly subjects. Prostaglandins Leukot Essent Fatty Acids 78:265–269

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Takeya R, Sumimoto H (2000) A novel intracellular membrane-bound calcium-independent phospholipase A2. Biochem Biophys Res Commun 272:320–326

    Article  PubMed  CAS  Google Scholar 

  • Tocco G, Massicotte G, Standley S, Thompson RF, Baudry M (1992) Phospholipase A2-induced changes in AMPA receptor: an autoradiographic study. Neuroreport 3:515–518

    Article  PubMed  CAS  Google Scholar 

  • Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL (1998) A novel calcium-independent phospholipase A2, cPLA2-γ, that is prenylated and contains homology to cPLA2. J Biol Chem 273:21926–21932

    Article  PubMed  CAS  Google Scholar 

  • Vianna MR, Barros DM, Silva T, Choi H, Madche C, Rodrigues C, Medina JH, Izquierdo I (2000) Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacology (Berl) 150:77–84

    Article  CAS  Google Scholar 

  • Walz R, Roesler R, Quevedo J, Sant’Anna MK, Madruga M, Rodrigues C, Gottfried C, Medina JH, Izquierdo I (2000) Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem 73:11–20

    Article  PubMed  CAS  Google Scholar 

  • Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999) Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 360:609–615

    Article  PubMed  CAS  Google Scholar 

  • Wenisch E, Cantegreil-Kallen I, De Rotrou J, Garrigue P, Moulin F, Batouche F, Richard A, De Sant’Anna M, Rigaud AS (2007) Cognitive stimulation intervention for elders with mild cognitive impairment compared with normal aged subjects: preliminary results. Aging Clin Exp Res 19:316–322

    PubMed  Google Scholar 

  • Wijkander J, Sundler R (1991) An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem 202:873–880

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J Neurochem 73:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y, Watanabe Y (1990) Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem Biophys Res Commun 170:484–490

    Article  PubMed  CAS  Google Scholar 

  • Young E, Cesena T, Meiri KF, Perrone-Bizzozero NI (2002) Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12:457–464

    Article  PubMed  CAS  Google Scholar 

  • Zanatta MS, Schaeffer E, Schmitz PK, Medina JH, Quevedo J, Quillfeldt JA, Izquierdo I (1996) Sequential involvement of NMDA receptor-dependent processes in hippocampus, amygdala, entorhinal cortex and parietal cortex in memory processing. Behav Pharmacol 7:341–345

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Das S, Murthy KS (2003) Erk1/2- and p38 MAP kinase-dependent phosphorylation and activation of cPLA2 by m3 and m2 receptors. Am J Physiol Gastrointest Liver Physiol 284:G472–G480

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Projects 02/13633-7, 05/52896-1, 05/52897-8). The Laboratory of Neuroscience receives financial support from the Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, E.L., Zorrón Pu, L., Gagliotti, D.A.M. et al. Conditioning training and retrieval increase phospholipase A2 activity in the cerebral cortex of rats. J Neural Transm 116, 41–50 (2009). https://doi.org/10.1007/s00702-008-0133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0133-5

Keywords

Navigation