Skip to main content

Advertisement

Log in

Apelin-13 Impaires Acquisition but Not Consolidation or Expression of Contextual Fear in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Apelin-13, as an endogenous neuropeptide, is the ligand for the G-protein-coupled receptor, APJ, which has recently been demonstrated to be involved in the process that contributes to learning and memory. Previous studies showed that apelin may be required for certain forms of learning and memory. Up to date, the role of apelin in fear memory has not been explored. In the present study, we tested the effects of apelin-13 (1.0, 2.0 and 4.0 µg/rat) on contextual fear conditioning (experiment 1), consolidation (experiment 2) and expression (experiment 3) in rats. A well established fear conditioning protocol was used, which contained three training phases: habituation, fear conditioning and test. Apelin-13 was i.c.v injected 10 min before conditioning (experiment 1), immediately after conditioning (experiment 2) or 10 min before testing (experiment 3). The values of percent freezing were used to measure fear. We found that only 2.0 µg apelin-13 administrations produced a decrease freezing in experiment 1. The most effective dose of apelin-13 (2.0 µg) was selected, but it had no effect on freezing in experiment 2 and 3. Furthermore, the decreased freezing in experiment 1 was not attributed to the deficits of locomotor activity and foot-shock sensitivity. These results, for the first time, indicated that apelin-13 impaired fear acquisition but not fear consolidation or expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476

    Article  CAS  PubMed  Google Scholar 

  2. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538:162–171

    Article  CAS  PubMed  Google Scholar 

  3. Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K, Corvol P, Palkovits M, Llorens-Cortès C (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77:1085–1096

    Article  CAS  PubMed  Google Scholar 

  4. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41

    Article  CAS  PubMed  Google Scholar 

  5. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fujino M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275:21061–21067

    Article  CAS  PubMed  Google Scholar 

  6. Masri B, Morin N, Pedebernade L, Knibiehler B, Audigier Y (2006) The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem 281:18317–18326

    Article  CAS  PubMed  Google Scholar 

  7. Azizi Y, Faghihi M, Imani A, Roghani M, Zekri A, Mobasheri MB, Rastgar T, Moghimian M (2015) Post-infarct treatment with [Pyr(1)]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur J Pharmacol 761:101–108

    Article  CAS  PubMed  Google Scholar 

  8. Seyedabadi M, Goodchild AK, Pilowsky PM (2002) Site-specific effects of apelin-13 in the rat medulla oblongata on arterial pressure and respiration. Auton Neurosci 101:32–38

    Article  CAS  PubMed  Google Scholar 

  9. Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212

    Article  CAS  PubMed  Google Scholar 

  10. Mishra A, Kohli S, Dua S, Thinlas T, Mohammad G, Pasha MA (2015) Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Proc Natl Acad Sci USA 112:6134–6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jászberényi M, Bujdosó E, Telegdy G (2004) Behavioral, neuroendocrine and thermoregulatory action of apelin-13. Neuroscience 129:811–816

    Article  PubMed  Google Scholar 

  12. De Mota N, Lenkei Z, Llorens-Cortes C (2000) Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroendocrinology 72:400–407

    Article  PubMed  Google Scholar 

  13. O’Carroll AM, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492:72–80

    Article  PubMed  Google Scholar 

  14. Telegdy G, Adamik A, Jászberényi M (2013) Involvement of neurotransmitters in the action of apelin-13 on passive avoidance learning in mice. Peptides 39:171–174

    Article  CAS  PubMed  Google Scholar 

  15. Han RW, Xu HJ, Zhang RS, Wang R (2014) The role of apelin-13 in novel object recognition memory. Peptides 62:155–158

    Article  CAS  PubMed  Google Scholar 

  16. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    Article  CAS  PubMed  Google Scholar 

  17. Wallenstein GV, Vago DR (2001) Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol Learn Mem 75:245–252

    Article  CAS  PubMed  Google Scholar 

  18. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17:5196–5205

    CAS  PubMed  Google Scholar 

  19. Handford Charlotte E, Tan Shawn, Lawrence Andrew J, Kim Jee Hyun (2014) The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist d-cycloserine on Pavlovian conditioned fear. Int J Neuropsychopharmacol 17:1521–1532  

    Article  CAS  PubMed  Google Scholar 

  20. Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A Stereotaxic Atlas of the Rat Brain. Plenum Press, New York

    Google Scholar 

  21. Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex inthe recovery of extinguished fear. J Neurosci 20:6225–6231

    CAS  PubMed  Google Scholar 

  22. Lv SY, Qin YJ, Wang HT, Xu N, Yang YJ, Chen Q (2012) Centrally administered apelin-13 induces depression-like behavior in mice. Brain Res Bull 88:574–580

    Article  CAS  PubMed  Google Scholar 

  23. Choe W, Albright A, Sulcove J, Jaffer S, Hesselgesser J, Lavi E, Crino P, Kolson DL (2000) Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells. J Neurovirol 6:S61–S69

    Article  CAS  PubMed  Google Scholar 

  24. Kleinz MJ, Skepper JN, Davenport AP (2005) Immunoeytochemical localization of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126:233–240

    Article  CAS  PubMed  Google Scholar 

  25. Telegdy G, Jászberényi M (2014) Transmitter mediation of the anxiolytic action of apelin-13 in male mice. Neurobiology of learning and memory. Behav Brain Res 263:198–202

    Article  CAS  PubMed  Google Scholar 

  26. Xu N, Wang H, Fan L, Chen Q (2009) Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides 30:1153–1157

    Article  CAS  PubMed  Google Scholar 

  27. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  28. Wang XQ, Li XL, Wang GW (2013) Effect of prefrontal infralimbic cortex GABAA receptor agitating on passive avoidance memory consolidation of rats. Dongwuxue Yanjiu 34:589–595

    PubMed  Google Scholar 

  29. Walf AA, Koonce CJ, Frye CA (2015) Progestogens’ effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 294:50–61

    Article  CAS  PubMed  Google Scholar 

  30. Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96:695–750

    Article  PubMed  Google Scholar 

  31. Preethi J, Singh HK, Venkataraman JS, Rajan KE (2014) Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus. Cell Mol Neurobiol 34:577–589

    Article  PubMed  Google Scholar 

  32. Cook DR, Gleichman AJ, Cross SA, Doshi S, Ho W, Jordan-Sciutto KL, Lynch DR, Kolson DL (2011) NMDA receptor modulation by the neuropeptide apelin: implications for excitotoxic injury. J Neurochem 118:1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Donnell LA, Agrawal A, Sabnekar P, Dichter MA, Lynch DR, Kolson DL (2007) Apelin an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury. J Neurochem 102:1905–1917

    Article  PubMed  Google Scholar 

  34. DuPont CM, Coppola JJ, Kaercher RM, Lindquist DH (2014) Impaired trace fear conditioning and diminished ERK1/2 phosphorylation in the dorsal hippocampus of adult rats administered alcohol as neonates. Behav Neurosci 128:187–198

    Article  CAS  PubMed  Google Scholar 

  35. Gao C, Gill MB, Tronson NC, Guedea AL, Guzmán YF, Huh KH, Corcoran KA, Swanson GT, Radulovic J (2010) Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus 20:1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson LR, McGuire J, Lazarus R, Palmer AA (2012) Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 62:638–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by A Project Supported by National Natural Science Foundation of China (81171281), A Project supported by Scientific Research Fund of Hunan Provincial Education Department (14C0128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaowen Tian or Xiaoqun Qin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Luo, H., Huang, F. et al. Apelin-13 Impaires Acquisition but Not Consolidation or Expression of Contextual Fear in Rats. Neurochem Res 41, 2345–2351 (2016). https://doi.org/10.1007/s11064-016-1948-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1948-3

Keywords

Navigation