Skip to main content

Advertisement

Log in

Co-transplantation of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 improve cell survival and neurological function in the injured rat spinal cord

  • Experimental research - Spine
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Spinal cord injury (SCI) is a devastating and irreversible event, and much research using fibroblast growth factor-2 (FGF-2) has been performed to test its capacity to blunt the effects of SCI as well as to provide an environment conducive for SCI repair.

Methods

We tested how the in vitro release of FGF-2 from heparin-conjugated poly(L-lactide-co-glycolide) (PLGA)-conjugated nanospheres (HCPNs) affected the growth of human bone marrow-derived mesenchymal stem cells (hBMSCs), as well as the effects of their co-transplantation in an animal model of SCI.

Results

Our results showed that sustained, long-term release of FGF-2 from HCPNs significantly increased hBMSCs proliferation in vitro, and that their co-transplantation following rat SCI lead to increased functional improvement, a greater amount of hBMSCs surviving transplantation, and a greater density of neurofilament-positive cells in the injury epicenter.

Conclusion

These results suggest a proliferative, protective, and neural inductive potential of FGF-2 for transplanted hBMSCs, as well as a possible role for sustained FGF-2 delivery along with hBMSCs transplantation in the injured spinal cord. Future studies will be required to ascertain the safety FGF-2-containing HCPNs before clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  CAS  PubMed  Google Scholar 

  3. Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ (2008) Targeted Delivery of Nanoparticles Bearing Fibroblast Growth Factor-2 by Ultrasonic Microbubble Destruction for Therapeutic Arteriogenesis. Small 4:1769–1777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cizkova D, Rosocha J, Vanicky I, Jergova S, Čížek M (2006) Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery After Spinal Cord Injury in the Rat. Cell Mol Neurobiol 26:1165–1178

    Article  Google Scholar 

  5. Clements BA, Hsu CYM, Kucharski C, Lin X, Rose L, Uludağ H (2009) Nonviral Delivery of Basic Fibroblast Growth Factor Gene to Bone Marrow Stromal Cells. Clin Orthop Relat Res 467:3129–3137

    Article  PubMed  Google Scholar 

  6. Dasari VR, Spomar DG, Cady C, Gujrati M, Rao JS, Dinh DH (2007) Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochem Res 32:2080–2093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Guo Q, Sebastian L, Sopher BL, Miller MW, Glazner GW, Ware CB, Martin GM, Mattson MP (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 96:4125–4130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99:2199–2204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Iwasaki YSTIKTNKTKM (1995) Acidic and basic fibroblast growth factors enhance neurite outgrowth in cultured rat spinal cord neurons. Neurol Res 17:70–72

    CAS  PubMed  Google Scholar 

  10. Jeon O, Kang S-W, Lim H-W, Hyung Chung J, Kim B-S (2006) Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(l-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 27:1598–1607

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez Hamann MC, Tator CH, Shoichet MS (2005) Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol 194:106–119

    Article  CAS  PubMed  Google Scholar 

  12. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D, Logvinova A, Ross CA, Greenberg DA, Ellerby LM (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci U S A 102:18189–18194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kim K-N, Oh SH, Lee KH, Yoon D-H (2006) Effect of human mesenchymal stem cell transplantation combined with growth factor infusion in the repair of injured spinal cord. Acta Neurochir Suppl 99:133–136

    Article  CAS  PubMed  Google Scholar 

  14. Kuh S-U, Cho Y-E, Yoon D-H, Kim K-N, Ha Y (2005) Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir 147:985–992, discussion 992

    Article  PubMed  Google Scholar 

  15. Lee KH, Suh-Kim H, Choi JS, Jeun S-S, Kim EJ, Kim S-S, Yoon DH, Lee BH (2007) Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars) 67:13–22

    Google Scholar 

  16. Lian Jin H, Pennant WA, Hyung Lee M, Su S, Ah Kim H, Lu Liu M, Soo Oh J, Cho J, Nyun Kim K, Heum Yoon D, Ha Y (2011) Neural Stem Cells Modified by a Hypoxia-Inducible VEGF Gene Expression System Improve Cell Viability under Hypoxic Conditions and Spinal Cord Injury. Spine 36:857–864

    Article  PubMed  Google Scholar 

  17. Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M (2007) Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res 1149:172–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138:4456–4462

    CAS  PubMed  Google Scholar 

  19. Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK (1993) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci: Off J Soc Neurosci 13:4575–4588

    CAS  Google Scholar 

  20. Meijs MF, Timmers L, Pearse DD, Tresco PA, Bates ML, Joosten EA, Bartlett Bunge M, Oudega M (2004) Basic fibroblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord. J Neurotrauma 21:1415–1430

    Article  PubMed  Google Scholar 

  21. Ohori Y, Si Y, Nagao M, Sugimori M, Yamamoto N, Nakamura K, Nakafuku M (2006) Growth Factor Treatment and Genetic Manipulation Stimulate Neurogenesis and Oligodendrogenesis by Endogenous Neural Progenitors in the Injured Adult Spinal Cord. J Neurosci 26:11948–11960

    Article  CAS  PubMed  Google Scholar 

  22. Ohta M (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    Article  CAS  PubMed  Google Scholar 

  23. Pri-Chen S, Pitaru S, Lokiec F, Savion N (1998) Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone 23:111–117

    Article  CAS  PubMed  Google Scholar 

  24. Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW (2000) Basic Fibroblast Growth Factor (bFGF) Enhances Functional Recovery Following Severe Spinal Cord Injury to the Rat. Exp Neurol 164:280–291

    Article  CAS  PubMed  Google Scholar 

  25. Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148:577–586

    Article  CAS  PubMed  Google Scholar 

  26. Shin DA, Kim JM, Kim HI, Yi S, Ha Y, Yoon Do H, Kim KN (2013) Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury. Acta Neurochir 155:1943–1950, Wien

    Article  PubMed  Google Scholar 

  27. Teng YD, Mocchetti I, Taveira-DaSilva AM, Gillis RA, Wrathall JR (1999) Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 19:7037–7047

    CAS  PubMed  Google Scholar 

  28. Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M, Kataoka K, Ohta M, Chou H, Ide C (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW (2008) Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem 283:5287–5295

    Article  CAS  PubMed  Google Scholar 

  30. Yoshihara T, Ohta M, Itokazu Y, Matsumoto N, Dezawa M, Suzuki Y, Taguchi A, Watanabe Y, Adachi Y, Ikehara S, Sugimoto H, Ide C (2007) Neuroprotective Effect of Bone Marrow–Derived Mononuclear Cells Promoting Functional Recovery from Spinal Cord Injury. J Neurotrauma 24:1026–1036

    Article  PubMed  Google Scholar 

Download references

Funding

1. The Stem Cell Research Center of the 21st Century Frontier Research Program, Ministry of Education, Science and Technology, Korea

2. The Korea Healthcare technology R&D project, Ministry for Health & Welfare Affairs, Republic of Korea (A111016)

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keung Nyun Kim.

Additional information

Dong Ah Shin and William A. Pennant contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, D.A., Pennant, W.A., Yoon, D.H. et al. Co-transplantation of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 improve cell survival and neurological function in the injured rat spinal cord. Acta Neurochir 156, 297–303 (2014). https://doi.org/10.1007/s00701-013-1963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1963-y

Keywords

Navigation