Skip to main content
Log in

Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plastid DNA sequences have been widely used by systematists for reconstructing plant phylogenies. The utility of any DNA region for phylogenetic analysis is determined by ease of amplification and sequencing, confidence of assessment in phylogenetic character alignment, and by variability across broad taxon sampling. Often, a compromise must be made between using relatively highly conserved coding regions or highly variable introns and intergenic spacers. Analyses of a combination of these types of DNA regions yield phylogenetic structure at various levels of a tree (i.e., along the spine and at the tips of the branches). Here, we demonstrate the phylogenetic utility of a heretofore unused portion of a plastid protein-coding gene, hypothetical chloroplast open reading frame 1 (ycf1), in orchids. All portions of ycf1 examined are highly variable, yet alignable across Orchidaceae, and are phylogenetically informative at the level of species. In Orchidaceae, ycf1 is more variable than matK both in total number of parsimony informative characters and in percent variability. The nrITS region is more variable than ycf1, but is more difficult to align. Although we only demonstrate the phylogenetic utility of ycf1 in orchids, it is likely to be similarly useful among other plant taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Research 11:93–99

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Article  Google Scholar 

  • Buckley TR, Simon C, Shimodaira H, Chambers GK (2001) Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology. Molec Biol Evol 18:223–234

    PubMed  CAS  Google Scholar 

  • Cameron K (2002) Molecular systematics of Orchidaceae: a literature review and an example using five plastid genes. In: Nair H (ed) Proceedings of the 17th World Orchid Conference. Shah Alam, Malaysia

    Google Scholar 

  • Cameron KM (2004) Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Molec Phylogenet Evol 31:1157–1180

    Article  PubMed  CAS  Google Scholar 

  • Carlsward BS, Whitten WM, Williams NH, Bytebier B (2006) Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Amer J Bot 93:770–786

    Article  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molec Biol Evol 23:279–291

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Freudenstein JV, Cameron KM, Barrett RL (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, pp 69–89

    Google Scholar 

  • Cox AV (1997) PaupGap version 1.0: program and documentation. Royal Botanical Gardens, Kew

    Google Scholar 

  • Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Pl J 22:97–104

    Article  CAS  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Freudenstein JV, van den Berg C, Goldman DH, Kores PJ, Molvray M, Chase MW (2004) An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Amer J Bot 91:149–157

    Article  CAS  Google Scholar 

  • Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu Y-L, Dhingra A, Bell CD, Soltis DE (2008) Resolving an ancient, rapid radiation in Saxifragales. Syst Biol 57:38–57

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Boston, pp 297–348

    Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Research 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kocyan A, de Vogel EF, Gravendeel B (2008) Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the Aeridinae. Molec Phylogenet Evol 48:422–443

    Article  CAS  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Version 4.06. Sinauer Associates, Sunderland

    Google Scholar 

  • Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Molec Biol Evol 6:355–368

    PubMed  CAS  Google Scholar 

  • Muller KF, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Molec Phylogenet Evol 41:99–117

    Article  PubMed  Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85:8573–8577

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (1996) Se-Al: sequence alignment editor, v2.0a11. University of Oxford, Oxford

    Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Cambridge, pp 45–68

    Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288

    Article  CAS  Google Scholar 

  • Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16:293–301

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Boston, pp 1–42

    Google Scholar 

  • Swofford DL (1999) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Amer J Bot 94:302–312

    Article  CAS  Google Scholar 

  • van den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase M (2005) An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Amer J Bot 92:613–624

    Article  Google Scholar 

  • Whitten MW, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Amer J Bot 87:1842–1856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this research were funded by the 11th World Orchid Conference Fellowship (University of Florida, for K.N.), by the US National Science Foundation grant no. DEB-234064 for the project Systematics of Maxillariinae (Orchidaceae): generic delimitation, pollinator rewards, and pollination, and by grant no. IOB-0543659 for the project Mechanisms of the evolutionary origins of Crassulacean acid metabolism in Tropical Orchids. We also thank the American Orchid Society for funding of Molecular systematics of the neotropical Sobralieae: parting the reeds of Sobralia and relatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Neubig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neubig, K.M., Whitten, W.M., Carlsward, B.S. et al. Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK. Plant Syst Evol 277, 75–84 (2009). https://doi.org/10.1007/s00606-008-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0105-0

Keywords

Navigation