Skip to main content
Log in

Fully commutative elements in finite and affine Coxeter groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

An element of a Coxeter group \(W\) is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley–Lieb algebra. In this work we deal with any finite or affine Coxeter group \(W\), and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley–Lieb algebra has linear growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Al Harbat, S.: A classification of affine fully commutative elements. arXiv:1311.7089 (arXiv preprint) (2013)

  2. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: Some permutations with forbidden subsequences and their inversion number. Discrete Math. 234(1–3), 1–15 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)

  4. Björner, A., Brenti, F.: Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York (2005)

    Google Scholar 

  5. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154(1–3), 1–25 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ernst, D.C.: Diagram calculus for a type affine \(C\) Temperley-Lieb algebra, II. arXiv:1101.4215 (arXiv preprint) (2011)

  7. Fan, C.K.: A Hecke algebra quotient and properties of commutative elements of a Weyl group. Phd thesis, M.I.T. (1995)

  8. Fan, C.K.: Structure of a Hecke algebra quotient. J. Am. Math. Soc. 10(1), 139–167 (1997)

    Article  MATH  Google Scholar 

  9. Fan, C.K., Green, R.M.: On the affine Temperley-Lieb algebras. J. Lond. Math. Soc. (2) 60(2), 366–380 (1999)

    Article  MathSciNet  Google Scholar 

  10. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1–3), 179–200 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994)

  11. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.7.2 (2013)

  12. Graham, J.: Modular Representations of Hecke Algebras and Related Algebras. PhD thesis, University of Sydney (1995)

  13. Green, R.M.: On 321-avoiding permutations in affine Weyl groups. J. Algebraic Combin. 15(3), 241–252 (2002)

  14. Green, R.M.: Combinatorics of Minuscule Representations. Cambridge tracts in mathematics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  15. Green, R.M., Losonczy, J.: Fully commutative Kazhdan-Lusztig cells. Ann. Inst. Fourier (Grenoble) 51(4), 1025–1045 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hagiwara, M.: Minuscule heaps over Dynkin diagrams of type \(\widetilde{A}\). Electron. J. Combin. 11(1), Research Paper 3, 20 (2004)

    MathSciNet  Google Scholar 

  17. Hanusa, C.R.H., Jones, B.C.: The enumeration of fully commutative affine permutations. Eur. J. Combin. 31(5), 1342–1359 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Humphreys, J.E.: Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  19. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. (2) 126(2), 335–388 (1987)

    Article  MATH  Google Scholar 

  20. Jouhet, F., Nadeau, P.: Long fully commutative elements in affine Coxeter groups. arXiv:1407.5575 (2014)

  21. Krattenthaler, C.: The theory of heaps and the Cartier Foata monoid. Appendix of the electronic edition of Problèmes combinatoires de commutation et réarrangements (2006)

  22. Krause, G.R., Lenagan, T.H.: Growth of algebras and Gelfand-Kirillov dimension, volume 22 of Graduate Studies in Mathematics. American Mathematical Society, Providence (revised edition) (2000)

  23. Lusztig, G.: Some examples of square integrable representations of semisimple \(p\)-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983)

    MATH  MathSciNet  Google Scholar 

  24. Postnikov, A.: Affine approach to quantum Schubert calculus. Duke Math. J. 128(3), 473–509 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shi, J.-Y.: Fully commutative elements and Kazhdan-Lusztig cells in the finite and affine Coxeter groups. Proc. Am. Math. Soc. 131(11), 3371–3378 (2003). (electronic)

    Article  MATH  Google Scholar 

  26. Shi, J.-Y.: Fully commutative elements and Kazhdan-Lusztig cells in the finite and affine Coxeter groups. II. Proc. Am. Math. Soc. 133(9), 2525–2531 (2005)

    Article  MATH  Google Scholar 

  27. Stembridge, J.R.: On the fully commutative elements of Coxeter groups. J. Algebraic Combin. 5(4), 353–385 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Stembridge, J.R.: Some combinatorial aspects of reduced words in finite Coxeter groups. Trans. Am. Math. Soc. 349(4), 1285–1332 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stembridge, J.R.: The enumeration of fully commutative elements of Coxeter groups. J. Algebraic Combin. 7(3), 291–320 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Temperley, H.N.V., Lieb, E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A 322(1549), 251–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In: Algebra, VI, volume 57 of Encyclopaedia of Mathematical Sciences, pp. 1–196. Springer, Berlin (1995)

  32. Viennot, G.X.: Heaps of pieces. I. Basic definitions and combinatorial lemmas. In: Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture Notes in Mathematics, pp. 321–350. Springer, Berlin (1986)

  33. Zavodovskii, M.V., Samoilenko, YuS: Growth generalized Temperley–Lieb algebras connected with simple graphs. Ukr. Math. J. 61(11), 1858–1864 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Biagioli.

Additional information

Communicated by J. S. Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagioli, R., Jouhet, F. & Nadeau, P. Fully commutative elements in finite and affine Coxeter groups. Monatsh Math 178, 1–37 (2015). https://doi.org/10.1007/s00605-014-0674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0674-7

Keywords

Mathematics Subject Classification

Navigation