Skip to main content
Log in

Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

An Erratum to this article was published on 11 August 2009

Abstract

We isolated Rhizoctonia-like fungi from populations of the threatened orchid Cypripedium macranthos. In ultrastructural observations of the septa, the isolates had a flattened imperforate parenthesome consisting of two electron-dense membranes bordered by an internal electron-lucent zone, identical to the septal ultrastructure of Rhizoctonia repens (teleomorph Tulasnella), a mycorrhizal fungus of many orchid species. However, hyphae of the isolates did not fuse with those of known tester strains of R. repens and grew less than half as fast as those of R. repens. In phylogenetic analyses, sequences for rDNA and internal transcribed spacer (ITS) regions of the isolates were distinct from those of the taxonomically identified species of Tulasnella. On the basis of the ITS sequences, the isolates clustered into two groups that corresponded exactly with the clades demonstrated for other Cypripedium spp. from Eurasia and North America despite the geographical separation, suggesting high specificity in the Cypripedium–fungus association. In addition, the two phylogenetic groups corresponded to two different plant clones at different developmental stages. The fungi from one clone constituted one group and did not belong to the other fungal group isolated from the other clone. The possibility of switching to a new mycorrhizal partner during the orchid’s lifetime is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen TF (1996) A comparative taxonomic study of Rhizoctonia sensu lato employing morphological, ultrastructural and molecular methods. Mycol Res 100:1117–1128. doi:10.1016/S0953-7562(96)80224-3

    Article  Google Scholar 

  • Bidartondo MI, Bruns TD, Wiess M, Segio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B Biol Sci 270:835–842. doi:10.1098/rspb.2002.2299

    Article  Google Scholar 

  • Bidartondo MI, Berghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchid and trees. Proc R Soc Lond B Biol Sci 271:1799–1806. doi:10.1098/rspb.2004.2807

    Article  CAS  Google Scholar 

  • Dearnaley JD (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486. doi:10.1007/s00572-007-0138-1

    Article  PubMed  Google Scholar 

  • Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243. doi:10.1007/s002940050272

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049. doi:10.1017/s0953756203008281

    Article  PubMed  CAS  Google Scholar 

  • McCormick MK, Whigham DF, O’Neill JP (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438. doi:10.1111/j.1469-8137.2004.01114.x

    Article  Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid–fungus fidelity: a marriage meant to last? Ecology 87:903–911. doi:10.1890/0012-9658(2006)87[903:OFAMMT]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Muir HJ (1989) Germination and mycorrhizal fungus compatibility in European orchids. In: Prichard HW (ed) Modern methods in orchid conservation: the role of physiology ecology and management. Cambridge University Press, Cambridge, UK, pp 39–56

    Google Scholar 

  • Ogoshi A (1975) Grouping of Rhizoctonia solani Kuhn and their perfect stages. Rev Plant Prot Res 8:93–103

    Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008) Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. Mycorrhiza 18:331–338. doi:10.1007/s00572-008-0187-0

    Article  PubMed  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858. doi:10.3732/ajb.89.11.1852

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. J Cell Biol 17:208–212. doi:10.1083/jcb.17.1.208

    Article  PubMed  CAS  Google Scholar 

  • Salazar O, Schneider JHM, Julian MC, Keijer J, Rubio V (1999) Phylogenetic subgrouping of Rhizoctonia solani AG 2 isolates based on ribosomal ITS sequences. Mycologia 91:459–467. doi:10.2307/3761346

    Article  CAS  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114. doi:10.1007/s10267-007-0394-0

    Article  CAS  Google Scholar 

  • Shefferson RP, Weiss M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626. doi:10.1111/j.1365-294X.2005.02424.x

    Article  PubMed  CAS  Google Scholar 

  • Shefferson RP, Taylor DL, Weiss M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61–6:1380–1390. doi:10.1111/j.1558-5646.2007.00112.X

    Article  Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchid colonizing Estonian mine tailings hills. Am J Bot 95:156–164. doi:10.3732/ajb.95.2.156

    Article  Google Scholar 

  • Shimura H, Koda Y (2005) Enhanced symbiotic germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123:281–287

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. APS, St. Paul, MN

    Google Scholar 

  • Suárez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi from mycorrhizas with epiphytic orchids in Andean cloud forest. Mycol Res 110:1257–1270. doi:10.1016/j.mycres.2006.08.004

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, MA

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci U S A 94:4510–4515. doi:10.1073/pnas.94.9.4510

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: van der Hejden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 375–413

    Google Scholar 

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179. doi:10.3732/ajb.90.8.1168

    Article  CAS  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033. doi:10.1111/j.1469-8137.2007.02320.x

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  • Warcup JH, Talbot PHB (1971) Perfect states of Rhizoctonias associated with orchids II. New Phytol 70:35–40. doi:10.1111/j.1469-8137.1971.tb02506.x

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, CA, pp 315–322

    Google Scholar 

  • Zelmer CD, Currah RS (1995) Ceratorhiza pernacatena and Epulorhiza calendulina spp. nov.: mycorrhizal fungi of terrestrial orchids. Can J Bot 73:1981–1985. doi:10.1139/b95-212

    Article  Google Scholar 

Download references

Acknowledgments

We are most grateful to Dr. Chikara Masuta for many helpful discussions and suggestions. We thank Mr. Akihiko Matsuzawa for his generous help in molecular works. This work was supported in part by a Grant-in-Aid (Conservation study on designated national endangered plants with the model case C. macranthos var. rebunense) from the Ministry of the Environment, Japan, and by a Grant-in-Aid (no. 16310157) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanako Shimura.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Phylogenetic tree of the ITS–5.8S sequences from fungal isolates from Cypripedium on Rebun island and Epulorhiza spp. (teleomorph Tulasnella spp.) isolates. The best tree resulting from heuristic maximum likelihood analysis in PAUP* is presented with support values derived using 1,000 bootstrap ML replicates (values >70% are shown). Cypripedium isolates were boxed. Unidentified mycorrhizal fungi of Cypripedium species collected worldwide (bold face; Shefferson et al. 2007) were also included in this analysis to compare with the fungi we isolated. Accession DQ925516 and DQ925552 were derived from C. macranthos var. rebunense, accession DQ925643 was derived from C. macranthos var. speciosum, and other accessions were derived from other Cypripedium spp. from Eurasia and North America (Shefferson et al. 2007). Athelia (Sclerotium) rolfsii (AY684917) was used as an outgroup (Sharon et al. 2008). The isolates from Cypripedium grouped in separate clusters, distant from the clusters of the Tulasnella and Epulorhiza groups. The clade TG-A to TG-F are classified by Sharon et al. (2008) (PPT 1594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimura, H., Sadamoto, M., Matsuura, M. et al. Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19, 525–534 (2009). https://doi.org/10.1007/s00572-009-0251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0251-4

Keywords

Navigation