Skip to main content
Log in

High-aspect-ratio nanoporous membranes made by reactive ion etching and e-beam and interference lithography

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nanoporous membranes engineered to mimic natural filtration systems can be used in “smart” implantable drug delivery systems, hemodialysis membranes, bio-artificial organs, and other novel nano-enabled medical devices. Conventional membranes exhibit several limitations, including broad pore size distributions and low pore densities. To overcome these problems, lithographic approaches were used to develop porous silicon, silicon nitride, ultrananocrystalline diamond (UNCD), and polymer film membranes. Here we report processing of high porosity, high-aspect-ratio membranes by two techniques: UNCD fabricated by reactive ion etching after e-beam lithography and epoxy fabricated by interference lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs nanomed. Nanobiotechnol 1(5):568–581

    Article  Google Scholar 

  • Auciello O, Sumant AV (2010) Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices. Diam Rel Mater 19(7–9):699

    Article  Google Scholar 

  • Bakowicz K, Mitura S (2002) Biocompatibilty of NCD. J Wide Bandgap Mater 9(4):261–272

    Article  Google Scholar 

  • Brueck SRJ (2005) Optical and interferometric lithography––nanotechnology enablers. Proc IEEE 93(10):1704

    Article  Google Scholar 

  • Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystal for the visible spectrum by holographic lithography. Nature 404:53

    Article  Google Scholar 

  • de Boor J, Geyer N, Gösele U, Schmidt V (2009) Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning. Opt Lett 34(12):1783

    Article  Google Scholar 

  • del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17(6):R81

    Article  Google Scholar 

  • Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56(11):1661–1673

    Article  Google Scholar 

  • Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immuno-isolating biocapsules. Biotechnol Bioeng 57(1):118–120

    Article  Google Scholar 

  • Fernandez A, Decker JY, Herman SM, Phillion DW, Sweeney DW, Perry MD (1997) Methods for fabricating arrays of holes using interference lithography. J Vac Sci Technol B 15(6):2439

    Article  Google Scholar 

  • Fries MD, Vohra YK (2004) Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes. Diam Rel Mater 13:1740–1743

    Article  Google Scholar 

  • Gruen DM, Shenderova OA, Vul AY (2005) Synthesis, properties and applications of ultrananocrystalline diamond. Springer, New York

    Book  Google Scholar 

  • Gutierrez-Rivera LE, Cescato L (2008) SU-8 sub-micrometric sieves recorded by UV interference lithography. J Micromech Microeng 18(11):115003

    Article  Google Scholar 

  • Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742

    Article  Google Scholar 

  • Kuiper S, van Wolferen H, van Rijn CJM, Nijdam W, Krijnen G, Elwenspoek M (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11:33

    Article  Google Scholar 

  • Lorenz H, Despont M, Fahrni N, Brugger J, Vettiger P, Renaud P (1998a) High-aspect-ratio, ultra-thick, negative-tone near-UV photoresist and its applications for MEMS. Sens Actuat A 64(1):33

    Article  Google Scholar 

  • Lorenz H, Laudon M, Renaud P P (1998b) Mechanial characterization of a new high-aspect-ratio near UV-photoresist. Microelectron Eng 41(42):371

    Article  Google Scholar 

  • Makarova OV, Divan R, N. Moldovan N, Rosenmann D, Tang C-M (2010) Nanoporous ultrananocrystalline diamond membranes. J Vac Sci Technol B 28, C6P42

  • Makarova OV, Tang C-M, Amstutz P, Divan R, Imre A, Mancini DC, Hoffbauer M, Williamson T (2009) Fabrication of high density, high-aspect-ratio polymide nanofilters. J Vac Sci Technol B 27(6):2585–2587

    Article  Google Scholar 

  • Narayan RJ, Jin C, Menegazzo N, Mizaikoff B, Gerhardt RA, Andara M, Agarwal A, Shih CC, Shih CM, Lin SJ, Su YY (2007) Nanoporous hard carbon membranes for medical applications. J Nanosci Nanotechnol 7(4–5):1486–1493

    Article  Google Scholar 

  • Narayan RJ, Aggarwal R, Wei W, Jin C, Monteiro-Riviere NA, Crombez R, Shen W (2008) Mechanical and biological properties of nanoporous carbon membranes. Biomed Mater 3:034107

    Article  Google Scholar 

  • Pang L, Nakagawa W, Fainman Y (2003) Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching. Opt Eng 42:2912

    Article  Google Scholar 

  • Prenen AM, van der Werf JCA, Bastiaansen CWM, Broer DJ (2009) Monodisperse, polymeric nano- and microsieves produced with interference holography. Adv Mater 21(17):1751

    Article  Google Scholar 

  • Sumant AV, Auciello O, Yuan HC, Ma Z, Carpick RW, Mancini DC (2009) Large-area low-temperature ultrananocrystalline diamond 9UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMS/NEMS-CMOS systems. Proc SPIE 7318:731817

    Article  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabrication drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55(3):315–328

    Article  Google Scholar 

  • Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, Rijn CJM V, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4:283–288

    Article  Google Scholar 

  • van Rijn CJM, Nijdam W, Kuiper S, Veldhuis GJ, van Wolferen H, Elwenspoek M (1999) Microsieves made with laser interference lithography for micro-filtration applications. J Micromech Microeng 9:170

    Article  Google Scholar 

  • Walsh M (2000) Nanostructuring magnetic thin films using interference lithography. MIT, MS Thesis

    Google Scholar 

  • Wang X, Ocola LE, Divan R, Sumant AV (2012) Nano-patterning of ultrananocrystalline diamond nanowires. Nanotechnology 23(7):075301

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Liliana Stan for metal depositions and Dr. Ii Woong Jung for FIB cross-sections processing. Use of the Center for Nanoscale Materials, Argonne National Laboratory was supported by the US. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralu Divan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divan, R., Makarova, O.V., Skoog, S. et al. High-aspect-ratio nanoporous membranes made by reactive ion etching and e-beam and interference lithography. Microsyst Technol 20, 1797–1802 (2014). https://doi.org/10.1007/s00542-013-1932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1932-7

Keywords

Navigation