Skip to main content

Advertisement

Log in

Surface modification-assisted bonding of 2D polymer-based nanofluidic devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An oxygen plasma-assisted thermal bonding technique is demonstrated for sealing a two-dimensional (2D) polymer-based nanofluidic device. A polymethyl methacrylate (PMMA) substrate with 2D nanochannels and polyethylene terephthalate (PET) cover plate with microchannels was treated with optimized oxygen plasma parameters: chamber pressure of 1 mbar, power of 30 W and time of 2 min. The effective bonding area and bonding strength were significantly improved under the optimized bonding temperature of 70 °C, pressure of 0.5 MPa and time of 10 min. Nanoindentation experiments showed that oxygen plasma treatment did not change the PET or the PMMA modulus, which provides a novel sampling method to observe the profile structures of the deformation of 2D nanochannels by scanning electron microscope. The 2D PMMA–PET nanofluidic device with 89 (±2) nm wide and 84 (±2) nm deep nanochannels was successfully bonded under optimized process parameters. The total dimension loss of the 2D nanochannels was estimated to be 2 (±4) nm in width and 12 (±4) nm in depth. The deformation loss in depth is mainly attributed to sagging of the PET cover plate (10 nm) during the thermal bonding process. Experiments with Rhodamine B solution showed good sealing properties of the polymer-based 2D nanofluidic device without leakages and clogging. This bonding process provides a high potential technique for fabrication of 2D polymer-based nanofluidic device with low deformation loss, low cost and high throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abgrall P, Low LN, Nguyen NT (2007) Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 7:520–522. doi:10.1039/b616134k

    Article  Google Scholar 

  • Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26. doi:10.1002/(SICI)1522-2683(20000101)21:1<12:AID-ELPS12>3.3.CO;2-Z

    Article  Google Scholar 

  • Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6:66–73. doi:10.1039/b512179e

    Article  Google Scholar 

  • Cao H, Yu Z, Wang J, Tegenfeldt JO, Austin RH, Chen E, Wu W, Chou SY (2002) Fabrication of 10 nm enclosed nanofluidic channels. Appl Phys Lett 81:174–176. doi:10.1063/1.1489102

    Article  Google Scholar 

  • Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-Lopez J, Park S, Datta P, Goettert J, Cho YK, Soper SA (2010) Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab Chip 10:3255–3264. doi:10.1039/c0lc00096e

    Article  Google Scholar 

  • Chantiwas R, Park S, Soper SA, Kim BC, Takayama S, Sunkara V, Hwang H, Cho YK (2011) Flexible fabrication and applications of polymer nanochannels and nanoslits. Chem Soc Rev 40:3677–3702. doi:10.1039/c0cs00138d

    Article  Google Scholar 

  • Chen ZF, Gao YH, Su RG, Li CW, Lin JM (2003) Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis 24:3246–3252. doi:10.1002/elps.200305534

    Article  Google Scholar 

  • Cheng E, Zou H, Yin Z, Jurčíček P, Zhang X (2013) Fabrication of 2D polymer nanochannels by sidewall lithography and hot embossing. J Micromech Microeng 23:075022. doi:10.1088/0960-1317/23/7/075022

    Article  Google Scholar 

  • Cheng E, Yin Z, Zou H, Jurčíček P (2014) Experimental and numerical study on deformation behavior of polyethylene terephthalate two-dimensional nanochannels during hot embossing process. J Micromech Microeng 24:015004. doi:10.1088/0960-1317/24/1/015004

    Article  Google Scholar 

  • Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116. doi:10.1063/1.114851

    Article  Google Scholar 

  • Chou HP, Spence C, Scherer A, Quake S (1999) A microfabricated device for sizing and sorting DNA molecules. Proc Natl Acad Sci USA 96:11–13

    Article  Google Scholar 

  • Daiguji H (2010) Ion transport in nanofluidic channels. Chem Soc Rev 39:901–911. doi:10.1039/b820556f

    Article  Google Scholar 

  • Gu J, Gupta R, Chou CF, Wei Q, Zenhausern F (2007) A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Lab Chip 7:1198–1201. doi:10.1039/b704851c

    Article  Google Scholar 

  • He Q, Chen S, Su Y, Fang Q, Chen H (2008) Fabrication of 1D nanofluidic channels on glass substrate by wet etching and room-temperature bonding. Anal Chim Acta 628:1–8. doi:10.1016/j.aca.2008.08.040

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang PD, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948. doi:10.1021/nl050493b

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551. doi:10.1021/nl062806o

    Article  Google Scholar 

  • Kim SJ, Song YA, Han J (2010) Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev 39:912–922. doi:10.1039/b822556g

    Article  Google Scholar 

  • Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844. doi:10.1039/b502809d

    Article  Google Scholar 

  • Ng SH, Tjeung RT, Wang ZF, Lu ACW, Rodriguez I, de Rooij NF (2008) Thermally activated solvent bonding of polymers. Microsyst Technol 14:753–759. doi:10.1007/s00542-007-0459-1

    Article  Google Scholar 

  • Pisignano D, D’Amone S, Gigli G, Cingolani R (2004) Rigid organic molds for nanoimprint lithography by replica molding of high glass transition temperature polymers. J Vac Sci Technol, B 22:1759–1763. doi:10.1116/1.1767108

    Article  Google Scholar 

  • Scheer HC, Bogdanski N, Wissen M, Konishi T, Hirai Y (2005) Polymer time constants during low temperature nanoimprint lithography. J Vac Sci Technol B 23:2963–2966. doi:10.1116/1.2121727

    Article  Google Scholar 

  • Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B 26:458–480. doi:10.1116/1.2890972

    Article  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883. doi:10.1103/RevModPhys.80.839

    Article  Google Scholar 

  • Shao PE, van Kan A, Wang LP, Ansari K, Bettiol AA, Watt F (2006) Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding. Appl Phys Lett 88:093515. doi:10.1063/1.2181631

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen NT (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16:1681–1688. doi:10.1088/0960-1317/16/8/033

    Article  Google Scholar 

  • Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16. doi:10.1007/s10404-008-0361-x

    Article  Google Scholar 

  • Tsukahara T, Mawatari K, Hibara A, Kitamori T (2008) Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction. Anal Bioanal Chem 391:2745–2752. doi:10.1007/s00216-008-2198-2

    Article  Google Scholar 

  • Umbrecht F, Mueller D, Gattiker F, Boutry CM, Neuenschwander J, Sennhauser U, Hierold C (2009) Solvent assisted bonding of polymethylmethacrylate: characterization using the response surface methodology. Sens Actuator A Phys 156:121–128. doi:10.1016/j.sna.2009.03.028

    Article  Google Scholar 

  • Ussing T, Petersen LV, Nielsen CB, Helbo B, Hojsle L (2007) Micro laser welding of polymer microstructures using low power laser diodes. Int J Adv Manuf Technol 33:198–205. doi:10.1007/s00170-007-0969-0

    Article  Google Scholar 

  • Wang XD, Jin J, Li X, Li XJ, Ou Y, Tang QS, Fu SJ, Gao FH (2011) Low-pressure thermal bonding. Microelectron Eng 88:2427–2430. doi:10.1016/j.mee.2011.01.022

    Article  Google Scholar 

  • Xie Q, Zhou Q, Xie F, Sang J, Wang W, Zhang HA, Wu W, Li Z (2012) Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique. Biomicrofluidics 6:016502. doi:10.1063/1.3683164

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (No. 91023046, No. 51075059) and Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, E., Yin, Z., Zou, H. et al. Surface modification-assisted bonding of 2D polymer-based nanofluidic devices. Microfluid Nanofluid 18, 527–535 (2015). https://doi.org/10.1007/s10404-014-1451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1451-6

Keywords

Navigation