Skip to main content
Log in

Measure contraction properties of Carnot groups

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that any corank 1 Carnot group of dimension \(k+1\) equipped with a left-invariant measure satisfies the \(\mathrm {MCP}(K,N)\) if and only if \(K \le 0\) and \(N \ge k+3\). This generalizes the well known result by Juillet for the Heisenberg group \(\mathbb {H}_{k+1}\) to a larger class of structures, which admit non-trivial abnormal minimizing curves. The number \(k+3\) coincides with the geodesic dimension of the Carnot group, which we define here for a general metric space. We discuss some of its properties, and its relation with the curvature exponent [the least N such that the \(\mathrm {MCP}(0,N)\) is satisfied]. We prove that, on a metric measure space, the curvature exponent is always larger than the geodesic dimension which, in turn, is larger than the Hausdorff one. When applied to Carnot groups, our results improve a previous lower bound due to Rifford. As a byproduct, we prove that a Carnot group is ideal if and only if it is fat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Ohta defines the measure contraction property for general length spaces, possibly with non-negligible cut loci. Under our assumptions, this simpler definition is equivalent to Ohta’s, see [16, Lemma 2.3].

  2. A sub-Riemannian structure \((M,\mathcal {D},g)\) is fat if for all \(x \in M\) and \(X \in \mathcal {D}\), \(X(x) \ne 0\), then \(\mathcal {D}_x + [X,\mathcal {D}]_x=T_xM\). It is ideal if it is complete and does not admit non-trivial abnormal minimizers.

References

  1. Agrachev, A., Barilari, D., Boscain, U.: On the Hausdorff volume in sub-Riemannian geometry. Calc. Var. Partial Differ. Equ. 43(3–4), 355–388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). https://webusers.imj-prg.fr/~davide.barilari/ABB-SRnotes-110715.pdf

  3. Agrachev, A., Barilari, D., Rizzi, L.: Curvature: a variational approach. Mem. AMS (in press)

  4. Agrachev, A., Sachkov, Y.L.: Control theory from the geometric viewpoint. Encyclopaedia of mathematical sciences, vol. 87. Control theory and optimization, II. Springer-Verlag, Berlin (2004)

  5. Ambrosio, L., Tilli, P.: Topics on analysis in metric spaces. Oxford lecture series in mathematics and its applications, vol. 25. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  6. Ardentov, A.A., Sachkov, Y.L.: Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J. Math. Sci. (N. Y.) 195(3), 369–390 (2013). Translation of Sovrem. Mat. Prilozh. No. 82 (2012)

  7. Barilari, D., Rizzi, L.: A formula for Popp’s volume in sub-Riemannian geometry. Anal. Geom. Metr. Spaces 1, 42–57 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ghezzi, R., Jean, F.: Hausdorff volume in non equiregular sub-Riemannian manifolds. Nonlinear Anal. 126, 345–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser classics, english edition. Birkhäuser Boston, Inc., Boston (2007). Based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates

  10. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Le Donne, E., Montgomery, R., Ottazzi, A., Pansu, P., Vittone, D.: Sard property for the endpoint map on some Carnot groups. Ann. l’Institut Henri Poincare (C) Non Linear Anal. (2015). doi:10.1016/j.anihpc.2015.07.004

  12. Le Donne, E., Nicolussi Golo, S.: Regularity properties of spheres in homogeneous groups. ArXiv e-prints (2015) (preprint)

  13. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitchell, J.: On Carnot-Carathéodory metrics. J. Differ. Geom. 21(1), 35–45 (1985)

    MATH  Google Scholar 

  15. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical surveys and monographs, vol. 91. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  16. Ohta, S.-I.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rifford, L.: Ricci curvatures in Carnot groups. Math. Control Relat. Fields 3(4), 467–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rifford, L.: Sub-Riemannian geometry and optimal transport. SpringerBriefs in Mathematics Springer Briefs in Mathematics, Springer (2014). (ISBN: 978-3-319-04803-1; 978-3-319-04804-8). doi:10.1007/978-3-319-04804-8 (2014)

  19. Rifford, L., Trélat, E.: Morse-Sard type results in sub-Riemannian geometry. Math. Ann. 332(1), 145–159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tan, K., Yang, X.: Subriemannian geodesics of Carnot groups of step 3. ESAIM Control Optim. Calc. Var. 19(1), 274–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I warmly thank D. Barilari for many fruitful discussions, and the anonymous referee for many useful comments. This research was supported by the ERC StG 2009 “GeCoMethods”, contract n. 239748, by the iCODE institute (research project of the Idex Paris-Saclay), and by the ANR project SRGI ANR-15-CE40-0018. This research benefited from the support of the “FMJH Program Gaspard Monge in optimization and operation research” and from the support to this program from EDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rizzi.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzi, L. Measure contraction properties of Carnot groups. Calc. Var. 55, 60 (2016). https://doi.org/10.1007/s00526-016-1002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1002-y

Mathematics Subject Classification

Navigation