Skip to main content
Log in

Refined microstructure of compo cast nanocomposites: the performance of combined neuro-computing, fuzzy logic and particle swarm techniques

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Aluminum metal matrix composites (MMCs) reinforced with nanoceramics are ideal materials for the manufacture of lightweight automotive and other commercial parts. Adaptive neuro-fuzzy inference system combined with particle swarm optimization method is implemented in this research study in order to optimize the parameters in processing of aluminum MMCs. In order to solve the problems associated with poor wettability, agglomeration and gravity segregation of nanoparticles in the melt, a mixture of alumina and aluminum particles was used as the reinforcement instead of raw nanoalumina. Microstructural characterization shows dendritic microstructure for the sand cast and non-dendritic microstructure for the compo cast samples. The fine equiaxed structure of compo cast nanocomposite arises from copious nucleation triggered by a pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rahimipour MR, Tofigh AA, Mazahery A, Shabani MO (2014) Strategic developments to improve the optimization performance with efficient optimum solution and produce high wear resistance aluminum–copper alloy matrix composites. Neural Comput Appl 24:1531–1538

    Article  Google Scholar 

  2. Ares AE, Schvezov CE (2013) Columnar-to-equiaxed transition in metal-matrix composites reinforced with silicon carbide particles. J Metall doi:10.1155/2013/628495

  3. Agaliotis E, Rosenberger M, Ares AE, Schvezov C (2012) Numerical modeling of the interaction between a foreign particle an solidifying crystalline interface. In: Nastac L, Zhang L, Thomas BG, Sabau A, El-Kaddah N, Powell AC, Combeau H (eds) CFD modeling and simulation in materials processing. Wiley, Hoboken

    Google Scholar 

  4. Mazahery A, Abdizadeh H, Baharvandi HR (2009) Development of high-performance A356/nano-Al2O3 composites. Mater Sci Eng A 518:61–64

    Article  Google Scholar 

  5. Agaliotis EM, Rosenberger MR, Ares AE, Schvezov CE (2012) Influence of the shape of the particles in the solidification of composite materials. Proc Mater Sci 1:58–63

    Article  Google Scholar 

  6. Agaliotis EM, Schvezov CE, Rosenberger MR, Ares AE (2012) A numerical model study of the effect of interface shape on particle pushing. J Cryst Growth 354(1):49–56

    Article  Google Scholar 

  7. Mazahery A, Shabani MO (2014) Modification mechanism and microstructural characteristics of eutectic Si in casting Al–Si alloys: a review on experimental and numerical studies. JOM 66(5):726–738

    Article  Google Scholar 

  8. Agaliotis EM, Rosenberger MR, Ares AE, Schvezov CE (2012) Modeling the interaction of convex solidifying interfaces with spherical particles. RSC Adv 2:12000–12006

    Article  Google Scholar 

  9. Ares AE, Gassa LM, Mendez CM (2012) Corrosion resistance of directionally solidified casting zinc–aluminum matrix. In: Shih H (ed) Corrosion resistance. Chapter 2, 35–54 p. INTECH Publishers

  10. Bauri R, Surappa MK (2009) Processing and compressive strength of Al–Li–SiCp composites fabricated by compound billet technique. J Mater Process Technol 209:2077–2084

    Article  Google Scholar 

  11. Mazahery A, Shabani MO, Rahimipour MR et al (2012) The numerical modeling of abrasion resistance in casting aluminum–silicon alloy matrix composites. J Compos Mater 46(21):2647–2658

    Article  Google Scholar 

  12. Hashim J, Looney L, Hashmi MSJ (2002) Particle distribution in cast metal matrix composites: part I. J Mater Process Technol 123:251–257

    Article  Google Scholar 

  13. Shabani MO, Mazahery A (2012) Prediction performance of various numerical model training algorithms in solidification process of A356 matrix composites. Indian J Eng Mater Sci 19:129–134

    Google Scholar 

  14. Blumenthal WR, Gray GT, Claytor TN (1994) Response of aluminium-infiltrated boron carbide cermets to shock wave loading. J Mater Sci 29:4567

    Article  Google Scholar 

  15. Mazahery A, Shabani MO (2011) Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J Compos Mater 45(24):2579–2586

    Article  Google Scholar 

  16. Pyzik AJ, Aksay IA (1989) Processing of ceramic and metal matrix composites. In: Proceedings of the international symposium on advances in processing of ceramic and metal matrix composites, New York, NY p 269

  17. Shabani MO, Mazahery A (2012) The GA optimization performance in the microstructure and mechanical properties of MMNCs. Trans Indian Inst Met 65(1):77–83

    Article  Google Scholar 

  18. Karnezis PA, Durrant G, Cantor B (1998) Characterization of reinforcement distribution in cast Al-alloy/SiC composites. Mater Char 40:97–109

    Article  Google Scholar 

  19. Mazahery A, Shabani MO (2013) Development of the principle of simulated natural evolution in searching for a more superior solution: proper selection of processing parameters in AMCs. Powder Technol 245:146–155

    Article  Google Scholar 

  20. Quaak CJ, Kool WH (1994) Properties of semisolid aluminium matrix composites. Mater Sci Eng A 188:277–282

    Article  Google Scholar 

  21. Shabani MO, Mazahery A (2011) Prediction of mechanical properties of cast A356 alloy as a function of microstructure and cooling rate. Arch Metall Mater 56(3):671–675

    Google Scholar 

  22. Leon CA, Drew RL (2000) Preparation of nickel-coated powders as precursors to reinforced metal matrix composites. J Mater Sci 35:4763–4768

    Article  Google Scholar 

  23. Mazahery A, Shabani MO (2012) Mechanical properties of squeeze-cast A356 composites reinforced with B 4C particulates. J Mater Eng Perform 21(2):247–252

    Article  Google Scholar 

  24. Tham LM, Gupta M, Cheng L (2001) Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater 49:3243–3253

    Article  Google Scholar 

  25. Shabani MO, Mazahery A (2013) Application of GA to optimize the process conditions of Al Matrix nano-composites. Compos B 45:185–191

    Article  Google Scholar 

  26. Moustafa SF, Badry SAL, Sanad AM et al (2002) Friction and wear behavior of graphite–copper composites. Wear 253:699–710

    Article  Google Scholar 

  27. Mazahery A, Shabani MO (2011) The accuracy of various training algorithms in tribological behavior modeling of A356-B 4C composites. Russ Metall (Metally) 7:699–707

    Article  Google Scholar 

  28. Cocen U, Onel K (2002) Ductility and strength extruded aluminum alloy composites. Compos Sci Technol 62:275–282

    Article  Google Scholar 

  29. McKimpson M, Scott T (1989) Processing and properties of metal matrix composites containing discontinuous reinforcement. Mater Sci Eng 107:93–106

    Article  Google Scholar 

  30. Mazahery A, Shabani MO (2012) A comparative study on abrasive wear behavior of semisolid–liquid processed Al–Si matrix reinforced with coated B4C reinforcement. Trans Indian Inst Met 65(2):145–154

    Article  Google Scholar 

  31. Varma VK, Kamath SV, Kutumabarao VV (2000) Tensile behaviour of powder metallurgy processed (Al–Cu–Mg)/SiCp composites. Mater Sci Technol 17:921–936

    Google Scholar 

  32. Zhong L (2000) Deformation behavior and microstructure effect in 2124Al/SiCp. Compos J Compos Mater 34:101–115

    Google Scholar 

  33. Shabani MO, Mazahery A (2011) Microstructural prediction of cast A356 alloy as a function of cooling rate. JOM 63(8):132–136

    Article  Google Scholar 

  34. Wei Liang-Ying (2013) A GA-weighted ANFIS model based on multiple stock market volatility causality for TAIEX forecasting. Appl Soft Comput 13:911–920

    Article  Google Scholar 

  35. Petalas YG, Antonopoulos CG, Bountis TC et al (2009) Detecting resonances in conservative maps using evolutionary algorithms. Phys Lett A 373:334–341

    Article  MATH  Google Scholar 

  36. Mazahery A, Shabani MO (2012) Assistance of novel artificial intelligence in optimization of aluminum matrix nanocomposite by genetic algorithm. Metall Mater Trans A 43:5279–5285

    Article  Google Scholar 

  37. Wu CH, Dong N, Ip WH et al (2010) Chaotic hybrid algorithm and its application in circle detection. Lecture Notes Comput Sci 6024:302–311

    Article  Google Scholar 

  38. Shabani MO, Alizadeh M, Mazahery A (2011) Modelling of mechanical properties of cast A356 alloy. Fatigue Fract Eng Mater Struct 34:1035–1040

    Article  Google Scholar 

  39. Zhao SZ, Suganthan PN (2011) Two-lbests based multiobjective particle swarm optimizer. Eng Optim 43(1):1–17

    Article  MathSciNet  Google Scholar 

  40. Sathiya P, Aravindan S, Haq AN et al (2009) Optimization of friction welding parameters using evolutionary computational techniques. J Mater Process Technol 209:2576–2584

    Article  Google Scholar 

  41. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multiobjective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177(22):5033–5049

    Article  MATH  MathSciNet  Google Scholar 

  42. Mazahery A, Shabani MO, Alizadeh M et al (2012) Concurrent fitness evaluations in searching for the optimal process conditions of Al matrix nanocomposites by linearly decreasing weight. J Compos Mater 47(14):1765–1772

    Article  Google Scholar 

  43. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol IV, Perth, Australia, p 1942–1948

  44. Shabani MO, Mazahery A (2013) Optimization of Al Matrix reinforced with B4C particles. JOM 65:272–277

    Article  Google Scholar 

  45. Mazahery A, Shabani MO (2012) Process conditions optimization in Al–Cu alloys matrix composites. Powder Technol 225:101–106

    Article  Google Scholar 

  46. Liang JJ, Qin AK, Suganthan PN et al (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295

    Article  Google Scholar 

  47. Shabani MO, Mazahery A (2012) Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites. Appl Math Model 36:5455–5465

    Article  Google Scholar 

  48. Beasley D, Bull DR, Martin RR (1993) A sequential niching technique for multimodal function optimization. Evol Comput 1(2):101–125

    Article  Google Scholar 

  49. Brits R (2002) Niching strategies for particle swarm optimization. Master’s thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa

  50. Shabani MO, Mazahery A (2012) Application of FEM and ANN in characterization of Al matrix nano composites using various training algorithms. Metall Mater Trans A 43:2158–2165

    Article  Google Scholar 

  51. Fieldsend JE (2009) Optimizing decision trees using multi-objective particle swarm optimization. Stud Comput Intell 242:93–114

    Article  Google Scholar 

  52. Mazahery A, Shabani MO (2012) A356 reinforced with nano particles: numerical analysis of mechanical properties. JOM 64(2):323–329

    Article  Google Scholar 

  53. Shabani MO, Mazahery A (2012) Application of a linearly decreasing weight particle swarm to optimize the process conditions of AL matrix nanocomposites. Metallurgist 56(5–6):414–422

    Article  Google Scholar 

  54. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the IEEE world congress on evolutionary computation, Honolulu, Hawaii. 1671–1676

  55. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inform Sci 176(8):937–971

    Article  MATH  MathSciNet  Google Scholar 

  56. Shabani MO, Mazahery A (2012) The performance of various artificial neurons interconnections in the modeling and experimental manufacturing of the composites. Mater Tehnol 46(2):109–113

    Google Scholar 

  57. Arora N, Vij SK (2013) Reckoner for health risk and insurance premium using adaptive neuro-fuzzy inference system. Neural Comput Appl 23(7–8):2121–2128

    Article  Google Scholar 

  58. Dilmaç H, Demir F (2013) Stress-strain modeling of high-strength concrete by the adaptive network-based fuzzy inference system (ANFIS) approach. Neural Comput Appl 23(7–8):385–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Tofigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, M.O., Rahimipour, M.R., Tofigh, A.A. et al. Refined microstructure of compo cast nanocomposites: the performance of combined neuro-computing, fuzzy logic and particle swarm techniques. Neural Comput & Applic 26, 899–909 (2015). https://doi.org/10.1007/s00521-014-1724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1724-8

Keywords

Navigation