Skip to main content
Log in

Investigations and regression modeling on mechanical characterization of cast aluminum alloy based (LM 26 + graphite + fly ash) hybrid metal matrix composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Aluminium Hybrid Metal Matrix Composites (AHMMC) outperformed traditional materials in a variety of engineering fields such as aerospace, marine, and automobile parts due to improved properties such as strength and hardness. The reinforcements which will be added in the AHMMC will make significant contributions for improving the desired material properties. An exploratory study was conducted in this investigation on the development of aluminum-based (LM 26) hybrid metal matrix composites with reinforcements of Graphite and fly-ash. The composite is fabricated using the stir casting approach with various reinforcement combinations by different weight proportions (LM 26 85% and 15% Graphite + fly-ash). The fabricated composites are tested to determine their mechanical properties in accordance with ASTM standards. A comparative analysis was performed to determine the significance of reinforcement as well as the properties of composites at various weight percentages. The reinforcement combinations (LM 26 85% and 7.5% Graphite + 7.5% fly-ash) offers comparatively better mechanical properties with tensile strength 238 N/mm2 and micro hardness 163.3 HV than the remaining combinations which are considered in this investigation. Microstructural analysis was also carried out to reveal the distributions of reinforcement and the nature of fractured surfaces. Wear behavior of the fabricated composite were analyzed by regression analysis and the results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghasali, E., Pakseresht, A., Rahbari, A., Eslami-shahed, H., Alizadeh, M., Ebadzadeh, T.: Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J. Alloys Compd. 666, 366–371 (2016). https://doi.org/10.1016/j.jallcom.2016.01.118

    Article  Google Scholar 

  2. Chandla, N.K., Kant, S., Goud, M.M.: Mechanical, tribological and microstructural characterization of stir cast Al-6061 metal/matrix composites—a comprehensive review. Sadhana (2021). https://doi.org/10.1007/s12046-021-01567-7

    Article  Google Scholar 

  3. Alaneme, K.K., Aluko, A.O.: Fracture toughness () and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Sci. iran. 19(4), 992–996 (2012). https://doi.org/10.1016/j.scient.2012.06.001

    Article  Google Scholar 

  4. Ramesh, P., Nataraj, M.: Automotive industry application of aluminium-based hybrid metal matrix composite. Int. J. Heavy Veh. Syst. 27(1/2), 18 (2020). https://doi.org/10.1504/ijhvs.2020.104412

    Article  Google Scholar 

  5. Alaneme, K.K., Babalola, S.A., Chown, L.H., Bodunrin, M.O.: Hot deformation behaviour of bamboo leaf ash-silicon carbide hybrid reinforced aluminium based composite. Manuf. Rev. (Les Ulis.) 7, 17 (2020). https://doi.org/10.1051/mfreview/2020014

    Article  Google Scholar 

  6. Kumar, J., Singh, D., Kalsi, N.S.: Tribological, physical and microstructural characterization of silicon carbide reinforced aluminium matrix composites: a review. Mater. Today 18, 3218–3232 (2019). https://doi.org/10.1016/j.matpr.2019.07.198

    Article  Google Scholar 

  7. Sharma, A., Sharma, V.M., Mewar, S., Pal, S.K., Paul, J.: Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Mater. Manuf. Process. 33(7), 795–804 (2018). https://doi.org/10.1080/10426914.2017.1401726

    Article  Google Scholar 

  8. Suresh, S., Shenbag, N., Moorthi, V.: Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng. 38, 89–97 (2012). https://doi.org/10.1016/j.proeng.2012.06.013

    Article  Google Scholar 

  9. Yaghobizadeh, O., Baharvandi, H.R., Ahmadi, A.R., Aghaei, E.: Development of the properties of Al/SiC nano-composite fabricated by stir cast method by means of coating sic particles with Al. SILICON 11(2), 643–649 (2019). https://doi.org/10.1007/s12633-018-9867-3

    Article  Google Scholar 

  10. Sharifitabar, M., Sarani, A., Khorshahian, S., Shafiee Afarani, M.: Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater. Eng. 32(8–9), 4164–4172 (2011). https://doi.org/10.1016/j.matdes.2011.04.048

    Article  Google Scholar 

  11. Siva Prasad, D., Shoba, C.: Hybrid composites – a better choice for high wear resistant materials. J. Mater. Res. Technol. 3(2), 172–178 (2014). https://doi.org/10.1016/j.jmrt.2014.03.004

    Article  Google Scholar 

  12. Sathish, T., Saravanan, S., Vijayan, V.: Effect of reinforced aluminium alloy LM30 with pure ceramic particles to evaluate hardness and wear properties. Mater. Res. Innovations 24(3), 129–132 (2020). https://doi.org/10.1080/14328917.2019.1614321

    Article  Google Scholar 

  13. Butola, R., Lakshay, T., Kem, L., Ranganath, M. S., Murtaza, Q.: "Mechanical and wear properties of aluminium alloy composites: a review." Manuf. Eng. pp. 369–391 (2020)

  14. Khelge, S., Kumar, V., Shetty, V., Kumaraswamy, J.: Effect of reinforcement particles on the mechanical and wear properties of aluminium alloy composites. Mater. Today Proc. 52, 571–576 (2021)

    Article  Google Scholar 

  15. Manna, A., Bains, H.S., Mahapatra, P.B.: Experimental study on fabrication of Al—Al2O3/Grp metal matrix composites. J. Compos. Mater. 45(19), 2003–2010 (2011). https://doi.org/10.1177/0021998310394691

    Article  Google Scholar 

  16. Radhika, N., Subramanian, R.: Effect of reinforcement on wear behaviour of aluminium hybrid composites. Tribol. Mater. Surf. Interfaces 7(1), 36–41 (2013). https://doi.org/10.1179/1751584x13y.0000000025

    Article  Google Scholar 

  17. Asif, M., Chandra, K., Misra, P.S.: Wear characteristic of al-based metal matrix composites used for heavy duty brake pad applications. Mater. Sci. For. 710, 407–411 (2012). https://doi.org/10.4028/www.scientific.net/msf.710.407

    Article  Google Scholar 

  18. Palanisamy, D., Devaraju, A., Manikandan, N., Balasubramanian, K., Arulkirubakaran, D.: Experimental investigation and optimization of process parameters in EDM of aluminium metal matrix composites. Mater. Today 22, 525–530 (2020). https://doi.org/10.1016/j.matpr.2019.08.145

    Article  Google Scholar 

  19. Karthik, S., Prakash, K.S., Gopal, P.M., Jothi, S.: Influence of materials and machining parameters on WEDM of Al/AlCoCrFeNiMo0.5 MMC. Mater. Manuf. Process. 34(7), 759–768 (2019). https://doi.org/10.1080/10426914.2019.1594250

    Article  Google Scholar 

  20. Shridhar, T.N., Krishnamurthy, L., Sridhara, B.K.: Machinability studies on aluminium matrix hybrid composites. Adv. Mat. Res. 894, 27–31 (2014). https://doi.org/10.4028/www.scientific.net/amr.894.27

    Article  Google Scholar 

  21. Rajmohan, T., Palanikumar, K.: Experimental investigation and analysis of thrust force in drilling hybrid metal matrix composites by coated carbide drills. Mater. Manuf. Process. 26(8), 961–968 (2011). https://doi.org/10.1080/10426914.2010.523915

    Article  Google Scholar 

  22. Ravi Kumar, K., Kiran, K., Sreebalaji, V.S.: Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloys Compd. 723, 795–801 (2017). https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  Google Scholar 

  23. Dhanalakshmi, S., Rameshbabu, T.: Multi-Aspects optimization of process parameters in CNC turning of LM 25 alloy using the taguchi-grey approach. Metals (Basel) 10(4), 453 (2020)

    Article  Google Scholar 

  24. Thankachan, T.P.: Production and machining performance study of nano Al2O3 particle reinforced LM25 aluminum alloy composites. J. Appl. Mech. Tech. Phys. 60(1), 136–143 (2019)

    Article  Google Scholar 

  25. Altunpak, Y., Akbulut, H.: Effects of aging heat treatment on machinability of alumina short fiber reinforced LM 13 aluminum alloy. Int. J. Adv. Manuf. Technol. 43(5–6), 449–454 (2009)

    Article  Google Scholar 

  26. Dhanalakshmi, S., Rameshbabu, T.: Comparative study of parametric influence on wet and dry machining of LM 25 aluminium alloy. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.06.101

    Article  Google Scholar 

  27. Katamreddy, S.C., Punnath, N., Radhika, N.: Multi-response optimisation of machining parameters in electrical discharge machining of Al LM25/AlB2 functionally graded composite using grey relation analysis. Int. J. Mach. Mach. Mater. 3, 193–213 (2018)

    Google Scholar 

  28. Udaya, P.J., Moorthy, T.V.: Adhesive wear behaviour of aluminium alloy/fly ash composites. Adv. Mat. Res. 622–623, 1290–1294 (2012)

    Google Scholar 

  29. Sharma, V.K., Singh, R.C., Chaudhary, R.: Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Eng. Sci. Technol. Int. J. 20(4), 1318–1323 (2017)

    Google Scholar 

  30. Subramaniam, B., Natarajan, B., Kaliyaperumal, B., Chelladurai, S.J.S.: Investigation on mechanical properties of aluminium 7075 - boron carbide - coconut shell fly ash reinforced hybrid metal matrix composites. China Foundry 15(6), 449–456 (2018)

    Article  Google Scholar 

  31. Kavimani, V., Soorya Prakash, K., Thankachan, T.: Multi-objective optimization in WEDM process of graphene – SiC-magnesium composite through hybrid techniques. Meas. (Lond.) 145, 335–349 (2019)

    Google Scholar 

  32. Sharma, V.K., Singh, R.C., Chaudhary, R.: Wear and friction behaviour of aluminium metal composite reinforced with graphite particles. Int. J. Surf. Sci. Eng. 12(5/6), 419 (2018)

    Article  Google Scholar 

  33. Sahoo, B., Kumar, R., Joseph, J., Sharma, A., Paul, J.: Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique. Surf. Coat. Technol. 309, 563–572 (2017)

    Article  Google Scholar 

  34. Alaneme, K.K., Sanusi, K.O.: Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Eng. Sci. Technol. Int. J. 18(3), 416–422 (2015)

    Google Scholar 

  35. Dev, S., Aherwar, A., Patnaik, A.: Preliminary evaluations on development of recycled porcelain reinforced LM-26/Al-Si10Cu3Mg1 alloy for piston materials. SILICON (2016). https://doi.org/10.1007/s12633-018-9979-9

    Article  Google Scholar 

  36. Pawar, S.Y., Kharde, Y.R.: Effect of dual reinforced ceramic particles on elevated temperature tribological properties of hybrid aluminium matrix composites. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1853495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Senthil, P., Manikandan, N. et al. Investigations and regression modeling on mechanical characterization of cast aluminum alloy based (LM 26 + graphite + fly ash) hybrid metal matrix composites. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-00881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-00881-6

Keywords

Navigation