Skip to main content
Log in

Pathophysiologie und Therapie der benignen Prostata-Hyperplasie

Pathophysiology and therapy of benign prostatic hyperplasia

  • Übersichtsarbeit
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Benign prostatic hyperplasia (BPH) and benign prostatic enlargement (BPE) are among the most frequent medical disorders of elderly men and cause a number of annoying symptoms of the lower urinary tract (LUTS), leading to reduced quality of life and severe complications, including acute urinary retention. Nodular overgrowth of the epithelium and in particular the fibromuscular tissue is observed in the transition zone and periurethral areas. In particular, functional and phenotypic transdifferentiation of fibroblasts into myofibroblasts is a hallmark of the tissue remodeling in the benign hyperplastic prostate. BPH/BPE have a complex pathophysiology with a multitude of endocrine and local factors involved. Two risk factors, namely aging and circulating androgens, contribute significantly to risk of BPH/BPE. One of the primary initiating mechanisms appears to be a consequence of age-related changes in systemic sex steroid hormone levels accompanied by alterations in local androgen metabolism. This results in the disruption of the delicate balance of interacting growth factor signaling pathways and stromal/epithelial interactions generating a growth promoting and tissue remodeling microenvironment that leads to an increase in prostate volume. Secondarily, altered cytokine and chemoattractant production by the remodeled stroma promotes local inflammation that may further contribute to disease progression via lymphocyte-derived inflammatory cytokines and reactive oxygen/nitrogen species. Local hypoxia as a result of increased oxygen demands of proliferating cells may induce low levels of reactive oxygen species promoting neovascularization and fibroblast-to-myofibroblast transdifferentiation. Medical therapies for LUTS due to BPH/BPE have changed little over the past 15 years with mainstay treatments being α-adrenoreceptor blockade and 5α-reductase inhibitors. We provide an in depth view of the mechanisms underlying BPH/BPE and relate new research findings to the clinical picture with the prospect of novel therapeutic targets, including selective hormone antagonists/agonists, anti-stromal therapy, vitamin-D analogues and approaches to redress the redox imbalance.

Zusammenfassung

Die Benigne Prostata Hyperplasie/Vergrößerung (BPH/BPE) ist der häufigste gutartige Tumor des alternden Mannes. Dieser gilt als eine Ursache einer Reihe von Symptomen des unteren Urogenitaltraktes (LUTS, Lower Urinary Tract Symptoms). Die BPH/BPE führt zu Einschränkungen der Lebensqualität sowie zu medizinischen Komplikationen bis hin zur akuten Harnverhaltung. Noduläres Wachstum, vorwiegend des fibromuskulären Gewebes der Transitionszone und der periurethralen Anteile, sowie funktionelle Änderungen der Zellen sind charakteristisch für die beobachtete Gewebsreorganisation in der BPH/BPE. Die Pathophysiologie der BPH/BPE ist komplex und es ist hierbei eine Anzahl endokriner und lokaler Faktoren involviert. Zwei Risikofaktoren sind essentiell für die Entwicklung der BPH/BPE, Altern und Androgene. Einen bedeutenden Einfluss auf die Entstehung scheinen die ab dem 35. Lebensjahr einsetzenden Veränderungen der Sexualsteroidhormon-Serumspiegel und -ratios zu haben. Diese laufen parallel zu Veränderungen im lokalen Sexualsteroidhormon-Stoffwechsel und zu Störungen in Wachstumsfaktor Signaltransduktionswegen in Stroma und Epithel. Das veränderte Stroma fördert über eine veränderte Zytokinproduktion lokale inflammatorische Prozesse, die das Fortschreiten der Erkrankung über inflammatorische Zytokine lymphozytären Ursprungs begünstigen. Lokale Hypoxie, ausgelöst durch zelluläre Proliferation, führt zur Produktion von Sauerstoffradikalen, welche eine Neovaskularisierung und die charaktreristische Transdifferenzierung von Fibroblasten zu glatten Muskelzellen bzw. Myofibroblasten auslösen. Die medikamentösen Standardtherapien von LUTS auf Grund von BPH/BPE haben sich seit 15 Jahren wenig geändert. Es sind dies die Blockade α-adrenerger Rezeptoren und die Hemmung des DHT-konvertierenden Enzyms 5α-Reduktase. In unserer Arbeit fassen wir die vermutlichen molekularen Mechanismen zur Entstehung der BPH/BPE zusammen und zeigen neue Wege zur therapeutischen Intervention auf. Zukünftige Ansätze beinhalten möglicherweise selektive Hormon Antagonisten/Agonisten, anti-stromal Therapie, Vitamin-D Analoga und Substanzen zur Wiederherstellung des Redox Gleichgewichts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Isaacs JT (1994) Etiology of benign prostatic hyperplasia. Eur Urol 25 [Suppl 1]: 6–9

    PubMed  Google Scholar 

  • Madersbacher S, Haidinger G, Temml C, Schmidbauer CP (1998) Prevalence of lower urinary tract symptoms in Austria as assessed by an open survey of 2,096 men. Eur Urol 34(2): 136–141

    Article  CAS  PubMed  Google Scholar 

  • Madersbacher S (2000) Prevalence of lower urinary tract symptoms and urinary incontinence in the elderly: recent data from Austria. Wien Klin Wochenschr 112(9): 379–380

    CAS  PubMed  Google Scholar 

  • Caine M (1986) The present role of alpha-adrenergic blockers in the treatment of benign prostatic hypertrophy. J Urol 136(1): 1–4

    CAS  PubMed  Google Scholar 

  • Madersbacher S, Marszalek M, Lackner J, Berger P, Schatzl G (2007) The long-term outcome of medical therapy for BPH. Eur Urol 51(6): 1522–1533

    Article  CAS  PubMed  Google Scholar 

  • Verhamme KM, Dieleman JP, Bleumink GS, Bosch JL, Stricker BH, Sturkenboom MC (2003) Treatment strategies, patterns of drug use and treatment discontinuation in men with LUTS suggestive of benign prostatic hyperplasia: the Triumph project. Eur Urol 44(5): 539–545

    Article  CAS  PubMed  Google Scholar 

  • McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12: 619–633

    Article  CAS  PubMed  Google Scholar 

  • Long RM, Morrissey C, Fitzpatrick JM, Watson RW (2005) Prostate epithelial cell differentiation and its relevance to the understanding of prostate cancer therapies. Clin Sci (Lond) 108(1): 1–11

    Article  CAS  Google Scholar 

  • Tokar EJ, Ancrile BB, Cunha GR, Webber MM (2005) Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 73 (9–10): 463–473

    Article  CAS  PubMed  Google Scholar 

  • Berger P, Gruschwitz M, Spoettl G, Dirnhofer S, Madersbacher S, Gerth R, et al (2007) Human chorionic gonadotropin (hCG) in the male reproductive tract. Mol Cell Endocrinol 260–262: 190–196

    Article  PubMed  CAS  Google Scholar 

  • Gkonos PJ, Krongrad A, Roos BA (1995) Neuroendocrine peptides in the prostate. Urological Research 23: 81–87

    Article  CAS  PubMed  Google Scholar 

  • Srodon M, Epstein JI (2002) Central zone histology of the prostate: a mimicker of high-grade prostatic intraepithelial neoplasia. Hum Pathol 33(5): 518–523

    Article  PubMed  Google Scholar 

  • van der Heul-Nieuwenhuijsen L, Hendriksen PJ, van der Kwast TH, Jenster G (2006) Gene expression profiling of the human prostate zones. BJU Int 98(4): 886–897

    Article  CAS  PubMed  Google Scholar 

  • Che M, Grignon D (2002) Pathology of prostate cancer. Cancer Metastasis Rev 21(3–4): 381–395

    Article  CAS  PubMed  Google Scholar 

  • Roehrborn CG, McConnell JD (2002) Etiology, pathophysiology, epidemiology and natural history of benign prostatic hyperplasia. In: Walsh PC, Retik AB, Vaughan ED Jr, Wein AJ (eds) Philadelphia. Campbell’s Urology, pp 1297–1336

  • Bonkhoff H, Remberger K (1998) Morphogenetic concepts of normal and abnormal growth in the human prostate. Virchows Archiv 433: 195–202

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DG, Cooner WH, Denis L, Jones GW, Scardino PT, Murphy GP (1992) The association of benign prostatic hyperplasia and cancer of the prostate. Cancer 70 [1 Suppl]: 291–301

    Article  CAS  PubMed  Google Scholar 

  • Untergasser G, Madersbacher S, Berger P (2005) Benign prostatic hyperplasia: age-related tissue-remodeling. Exp Gerontol 40(3): 121–128

    Article  PubMed  Google Scholar 

  • Lee S, Min HG, Choi SH, Kim YJ, Oh SW, Kim YJ, et al (2006) Central obesity as a risk factor for prostatic hyperplasia. Obesity (Silver Spring) 14(1): 172–179

    Article  Google Scholar 

  • Rohrmann S, Giovannucci E, Willett WC, Platz EA (2007) Fruit and vegetable consumption, intake of micronutrients, and benign prostatic hyperplasia in US men. Am J Clin Nutr 85(2): 523–529

    CAS  PubMed  Google Scholar 

  • Berger AP, Bartsch G, Deibl M, Alber H, Pachinger O, Fritsche G, et al (2006) Atherosclerosis as a risk factor for benign prostatic hyperplasia. BJU Int 98(5): 1038–1042

    Article  PubMed  Google Scholar 

  • Mullan RJ, Bergstralh EJ, Farmer SA, Jacobson DJ, Hebbring SJ, Cunningham JM, et al (2006) Growth factor, cytokine, and vitamin D receptor polymorphisms and risk of benign prostatic hyperplasia in a community-based cohort of men. Urology 67(2): 300–305

    Article  PubMed  Google Scholar 

  • Sampson N, Untergasser G, Plas E, Berger P (2007) The ageing male reproductive tract. J Pathol 211(2): 206–218

    Article  CAS  PubMed  Google Scholar 

  • Stoner E (1990) The clinical development of a 5 alpha-reductase inhibitor, finasteride. J Steroid Biochem Mol Biol 37(3): 375–378

    Article  CAS  PubMed  Google Scholar 

  • Steers WD (2001) 5alpha-reductase activity in the prostate. Urology 58 [6 Suppl 1]: 17–24; discussion

    Article  CAS  PubMed  Google Scholar 

  • Roehrborn CG, Siami P, Barkin J, Damiao R, Major-Walker K, Morrill B, et al (2008) The effects of dutasteride, tamsulosin and combination therapy on lower urinary tract symptoms in men with benign prostatic hyperplasia and prostatic enlargement: 2-year results from the CombAT study. J Urol 179(2): 616–621; discussion 21

    Article  CAS  PubMed  Google Scholar 

  • Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87(2): 589–598

    Article  CAS  PubMed  Google Scholar 

  • Baird DT, Uno A, Melby JC (1969) Adrenal secretion of androgens and oestrogens. J Endocrinol 45(1): 135–136

    Article  CAS  PubMed  Google Scholar 

  • Mohler JL, Gregory CW, Ford OH 3rd, Kim D, Weaver CM, Petrusz P, et al (2004) The androgen axis in recurrent prostate cancer. Clin Cancer Res 10(2): 440–448

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Hashimoto Y, Takahashi K (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10(21): 7121–7126

    Article  CAS  PubMed  Google Scholar 

  • Krieg M, Nass R, Tunn S (1993) Effect of aging on endogenous level of 5 alpha-dihydrotestosterone, testosterone, estradiol, and estrone in epithelium and stroma of normal and hyperplastic human prostate. J Clin Endocrinol Metab 77(2): 375–381

    CAS  PubMed  Google Scholar 

  • Wikstrom P, Ohlson N, Stattin P, Bergh A (2007) Nuclear androgen receptors recur in the epithelial and stromal compartments of malignant and non-malignant human prostate tissue several months after castration therapy. Prostate 67(12): 1277–1284

    Article  PubMed  Google Scholar 

  • Heracek J, Richard H, Martin H, Luboslav S, Jana S, Jitka K, et al (2007) Tissue and serum levels of principal androgens in benign prostatic hyperplasia and prostate cancer. Steroids 72(4): 375–380

    Article  CAS  PubMed  Google Scholar 

  • Bauman DR, Steckelbroeck S, Peehl DM, Penning TM (2006) Transcript profiling of the androgen signal in normal prostate, benign prostatic hyperplasia, and prostate cancer. Endocrinology 147(12): 5806–5816

    Article  CAS  PubMed  Google Scholar 

  • Roberts RO, Bergstralh EJ, Farmer SA, Jacobson DJ, Hebbring SJ, Cunningham JM, et al (2006) Polymorphisms in genes involved in sex hormone metabolism may increase risk of benign prostatic hyperplasia. Prostate 66(4): 392–404

    Article  CAS  PubMed  Google Scholar 

  • Prins GS, Jung MH, Vellanoweth RL, Chatterjee B, Roy AK (1996) Age-dependent expression of the androgen receptor gene in the prostate and its implication in glandular differentiation and hyperplasia. Dev Genet 18: 99–106

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Lin D, Signoretti S, Waltregny D, Dilks J, Bhattacharya N, et al (2003) Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55: 206–218

    Article  PubMed  Google Scholar 

  • Banerjee PP, Banerjee S, Brown TR (2001) Increased androgen receptor expression correlates with development of age-dependent, lobe-specific spontaneous hyperplasia of the brown Norway rat prostate. Endocrinology 142: 4066–4075

    Article  CAS  PubMed  Google Scholar 

  • Bonkhoff H, Remberger K (1996) Differentiation pathways and histogenic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28: 98–106

    Article  CAS  PubMed  Google Scholar 

  • Salazar EL, Mercado E, Calzada L (2005) Prostatic cancer/benign prostatic hypertrophy. Subcellular distribution of estradiol/androgen receptors. Arch Androl 51(2): 135–139

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, et al (2008) Novel 5alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 99: 81–86

    CAS  PubMed  Google Scholar 

  • Bonnet P, Reiter E, Bruyninx M, Sente B, Dombrowicz D, de Leval J, et al (1993) Benign prostatic hyperplasia and normal prostate ageing: differences in types I and II 5 alpha-reductase and steroid hormone receptor messenger ribonucleic acid (mRNA) levels, but not in insulin-like growth factor mRNA levels. J Clin Endocrinol Metab 77: 1203–1208

    CAS  PubMed  Google Scholar 

  • Shibata Y, Ito K, Suzuki K, Nakano K, Fukabori Y, Suzuki R, et al (2000) Changes in the endocrine environment of the human prostate transition zone with aging: simultaneous quantitative analysis of prostatic sex steroids and comparison with human prostatic histological composition. Prostate 42(1): 45–55

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu M, Maehara I, Ozaki M, Harada N, Orikasa S, Sasano H (1997) Aromatase in hyperplasia and carcinoma of the human prostate. Prostate 31(2): 118–124

    Article  CAS  PubMed  Google Scholar 

  • Radlmaier A, Eickenberg HU, Fletcher MS, Fourcade RO, Reis Santos JM, van Aubel OG, et al (1996) Estrogen reduction by aromatase inhibition for benign prostatic hyperplasia: results of a double-blind, placebo-controlled, randomized clinical trial using two doses of the aromatase-inhibitor atamestane. Atamestane Study Group. Prostate 29(4): 199–208

    Article  CAS  PubMed  Google Scholar 

  • Harkonen PL, Makela SI (2004) Role of estrogens in development of prostate cancer. J Steroid Biochem Mol Biol 92(4): 297–305

    Article  PubMed  CAS  Google Scholar 

  • Ho SM (2004) Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 91(3): 491–503

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR, Wang YZ, Hayward SW, Risbridger GP (2001) Estrogenic effects on prostatic differentiation and carcinogenesis. Reprod Fertil Dev 13(4): 285–296

    Article  CAS  PubMed  Google Scholar 

  • Weihua Z, Makela S, Andersson LC, Salmi S, Saji S, Webster JI, et al (2001) A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci USA 98(11): 6330–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weihua Z, Lathe R, Warner M, Gustafsson JA (2002) An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci USA 99(21): 13589–13594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McPherson SJ, Ellem SJ, Simpson ER, Patchev V, Fritzemeier KH, Risbridger GP (2007) Essential role for estrogen receptor beta in stromal-epithelial regulation of prostatic hyperplasia. Endocrinology 148(2): 566–574

    Article  CAS  PubMed  Google Scholar 

  • Shariat SF, Ashfaq R, Roehrborn C, Slawin KM, Lotan Y (2005) Expression of survivin and apoptotic biomarkers in benign prostatic hyperplasia. J Urol 174: 2046–2050

    Article  CAS  PubMed  Google Scholar 

  • Royuela M, Arenas MI, Bethencourt FR, Sanchez-Chapado M, Fraile B, Paniagua R (2002) Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol 33(3): 299–306

    Article  CAS  PubMed  Google Scholar 

  • Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, et al (1998) Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 90(17): 1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Bruckheimer EM, Kyprianou N (2002) Bcl-2 antagonises the combined apoptotic effect of transforming growth factor beta and dihydrotestosterone in prostate cancer cells. Prostate 53: 133–142

    Article  CAS  PubMed  Google Scholar 

  • Kyprianou N, Tu H, Jacobs SC (1996) Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Hum Pathol 27(7): 668–675

    Article  CAS  PubMed  Google Scholar 

  • Untergasser G, Gander R, Lilg C, Lepperdinger G, Plas E, Berger P (2005) Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev 126(1): 59–69

    Article  CAS  PubMed  Google Scholar 

  • Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8(9): 2912–2923

    CAS  PubMed  Google Scholar 

  • Barclay WW, Woodruff RD, Hall MC, Cramer SD (2005) A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology 146: 13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348

    Article  CAS  PubMed  Google Scholar 

  • Giri D, Ittmann M (2000) Interleukin-1alpha is a paracrine inducer of FGF7, a key epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 157(1): 249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropiquet F, Giri D, Lamb DJ, Ittmann M (1999) FGF7 and FGF2 are increased in benign prostatic hyperplasia and are associated with increased proliferation. J Urol 162(2): 595–599

    Article  CAS  PubMed  Google Scholar 

  • Giri D, Ittmann M (2001) Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 159(1): 139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollan MC, Benghuzzi HA, Tucci M (2003) Growth factor expression in early stages of benign prostatic hyperplasia upon exposure to sustained delivery of androgens. Biomed Sci Instrum 39: 329–334

    CAS  PubMed  Google Scholar 

  • Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D, Wilson EL (2005) TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 170(1): 81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliaccio A, Castoria G, Di Domenico M, Ciociola A, Lombardi M, De Falco A, et al (2006) Crosstalk between EGFR and extranuclear steroid receptors. Ann N Y Acad Sci 1089: 194–200

    Article  CAS  PubMed  Google Scholar 

  • Pandini G, Mineo R, Frasca F, Roberts CT, Marcelli M, Vigneri R, et al (2005) Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res 65: 1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Le H, Arnold JT, McFann KK, Blackman MR (2006) DHT and testosterone, but not DHEA or E2, differentially modulate IGF-I, IGFBP-2, and IGFBP-3 in human prostatic stromal cells. Am J Physiol Endocrinol Metab 290(5): E952–E960

    Article  CAS  PubMed  Google Scholar 

  • Wu JD, Haugk K, Woodke L, Nelson PS, Coleman I, Plymate S (2006) Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem 25: epub

  • van der Poel HG (2005) Androgen receptor and TGF-beta1/Smad signaling are mutually inhibitory in prostate cancer. Eur Urol 48: 1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Carey JL, Sasur LM, Kawakubo H, Gupta V, Christian B, Bailey PM, et al (2004) Mutually antagonistic effects of androgen and activin in the regulation of prostate cancer cell growth. Mol Endocrinol 18: 696–707

    Article  CAS  PubMed  Google Scholar 

  • Brodin G, ten Dijke P, Funa K, Heldin CH, Landstrom M (1999) Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res 59(11): 2731–2738

    CAS  PubMed  Google Scholar 

  • Chen G, Nomura M, Morinaga H, Matsubara E, Okabe T, Goto K, et al (2005) Modulation of androgen receptor transactivation by FoxH1. A newly identified androgen receptor corepressor. J Biol Chem 280(43): 36355–36363

    Article  CAS  PubMed  Google Scholar 

  • Sampson N, Untergasser G, Lilg C, Tadic L, Plas E, Berger P (2007) GAGEC1, a cancer/testis associated antigen family member, is a target of TGF-beta1 in age-related prostatic disease. Mech Ageing Dev 128(1): 64–66

    Article  CAS  PubMed  Google Scholar 

  • Kramer G, Mitteregger D, Marberger M (2007) Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 51(5): 1202–1216

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DG, de la Roza G, Dundore P, Corica FA, Iczkowski KA (2003) Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate 55(3): 187–193

    Article  PubMed  Google Scholar 

  • Hochreiter WW, Duncan JL, Schaeffer AJ (2000) Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J Urol 163(1): 127–130

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli L, Loetscher P, Kappeler A, Uguccioni M, Baggiolini M, Laissue JA, et al (1996) Monocyte chemoattractant protein-1 gene expression in prostatic hyperplasia and prostate adenocarcinoma. Am J Pathol 149(2): 501–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begley L, Monteleon C, Shah RB, Macdonald JW, Macoska JA (2005) CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4(6): 291–298

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Dong Z (2006) Characterization of TGF-beta-regulated interleukin-8 expression in human prostate cancer cells. Prostate 66: 996–1004

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Xia C, Gomez L, Lamb DJ, Ittmann M (2004)Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 60(2): 153–159

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bergh A, Damber JE (2004) Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate 61(1): 60–72

    Article  CAS  PubMed  Google Scholar 

  • Di Silverio F, Bosman C, Salvatori M, Albanesi L, Proietti Pannunzi L, Ciccariello M, et al (2005) Combination therapy with rofecoxib and finasteride in the treatment of men with lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). Eur Urol 47(1): 72–78; discussion 8–9

    Article  CAS  PubMed  Google Scholar 

  • Robinette CL (1988) Sex-hormone induced inflammation and fibromuscular proliferation in the rat lateral prostate. Prostate 12: 271–286

    Article  CAS  PubMed  Google Scholar 

  • Asirvatham AJ, Schmidt M, Gao B, Chaudhary J (2006)Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 147(1): 257–271

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, et al (2006) Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124(3): 615–629

    Article  CAS  PubMed  Google Scholar 

  • Nonn L, Peng L, Feldman D, Peehl DM (2006) Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res 66(8): 4516–4524

    Article  CAS  PubMed  Google Scholar 

  • Bao BY, Yao J, Lee YF (2006) 1{alpha}, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis 27: 1883–1893

    Article  CAS  PubMed  Google Scholar 

  • Crescioli C, Morelli A, Adorini L, Ferruzzi P, Luconi M, Vannelli GB, et al (2005) Human bladder as a novel target for vitamin D receptor ligands. J Clin Endocrinol Metab 90(2): 962–972

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1): 44–84

    Article  CAS  PubMed  Google Scholar 

  • Bergendi L, Benes L, Durackova Z, Ferencik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65(18–19): 1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Goswami K, Nandeesha H, Koner BC, Nandakumar DN (2007) A comparative study of serum protein-bound sialic acid in benign and malignant prostatic growth: possible role of oxidative stress in sialic acid homeostasis. Prostate Cancer Prostatic Dis 10(4): 356–359

    Article  CAS  PubMed  Google Scholar 

  • Merendino RA, Salvo F, Saija A, Di Pasquale G, Tomaino A, Minciullo PL, et al (2003) Malondialdehyde in benign prostate hypertrophy: a useful marker? Mediators Inflamm 12(2): 127–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradini R, Realacci M, Ginepri A, Naso G, Santangelo C, Cela O, et al (1999) Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology. J Pathol 189(2): 224–229

    Article  CAS  PubMed  Google Scholar 

  • Shahed AR, Shoskes DA (2001) Correlation of beta-endorphin and prostaglandin E2 levels in prostatic fluid of patients with chronic prostatitis with diagnosis and treatment response. J Urol 166(5): 1738–1741

    Article  CAS  PubMed  Google Scholar 

  • Potts JM, Pasqualotto FF (2003) Seminal oxidative stress in patients with chronic prostatitis. Andrologia 35(5): 304–308

    Article  CAS  PubMed  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett 448(2–3): 206–210

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (1995) Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270(51): 30334–30338

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20): 11715–11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlach A, Kietzmann T (2007) Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors. Methods Enzymol 435: 421–446

    Article  PubMed  CAS  Google Scholar 

  • Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16(4–5): 474–486

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90(6): 791–797

    Article  CAS  PubMed  Google Scholar 

  • Riva C, Chauvin C, Pison C, Leverve X (1998) Cellular physiology and molecular events in hypoxia-induced apoptosis. Anticancer Res 18(6B): 4729–4736

    CAS  PubMed  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9): 900–907

    Article  CAS  PubMed  Google Scholar 

  • Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkotter O, Sies H, et al (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119(Pt 13): 2727–2738

    Article  CAS  PubMed  Google Scholar 

  • Tam NN, Ghatak S, Ho SM (2003) Sex hormone-induced alterations in the activities of antioxidant enzymes and lipid peroxidation status in the prostate of Noble rats. Prostate 55(1): 1–8

    Article  CAS  PubMed  Google Scholar 

  • Tam NN, Leav I, Ho SM (2007) Sex hormones induce direct epithelial and inflammation-mediated oxidative/nitrosative stress that favors prostatic carcinogenesis in the noble rat. Am J Pathol 171(4): 1334–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy D, Cai Q, Felty Q, Narayan S (2007) Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J Toxicol Environ Health B Crit Rev 10(4): 235–257

    Article  CAS  PubMed  Google Scholar 

  • Chapple CR, Crowe R, Gilpin SA, Gosling J, Burnstock G (1991) The innervation of the human prostate gland – the changes associated with benign enlargement. J Urol 146(6): 1637–1644

    CAS  PubMed  Google Scholar 

  • Lepor H, Shapiro E (1984) Characterization of alpha1 adrenergic receptors in human benign prostatic hyperplasia. J Urol 132(6): 1226–1229

    CAS  PubMed  Google Scholar 

  • Burnett AL, Maguire MP, Chamness SL, Ricker DD, Takeda M, Lepor H, et al (1995) Characterization and localization of nitric oxide synthase in the human prostate. Urology 45(3): 435–439

    Article  CAS  PubMed  Google Scholar 

  • Crone JK, Burnett AL, Chamness SL, Strandberg JD, Chang TS (1998) Neuronal nitric oxide synthase in the canine prostate: aging, sex steroid, and pathology correlations. J Androl 19(3): 358–364

    CAS  PubMed  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100(3): 309–327

    Article  CAS  PubMed  Google Scholar 

  • Uckert S, Stief CG, Mayer M, Jonas U, Hedlund P (2005) Distribution and functional significance of phosphodiesterase isoenzymes in the human lower urinary tract. World J Urol 23(6): 368–373

    Article  PubMed  CAS  Google Scholar 

  • McVary KT, Monnig W, Camps JL Jr, Young JM, Tseng LJ, van den Ende G (2007) Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: a randomized, double-blind trial. J Urol 177(3): 1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Penning TM, Bauman DR, Jin Y, Rizner TL (2007) Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor. Mol Cell Endocrinol 265–266: 77–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampson, N., Madersbacher, S. & Berger, P. Pathophysiologie und Therapie der benignen Prostata-Hyperplasie. Wien Klin Wochenschr 120, 390–401 (2008). https://doi.org/10.1007/s00508-008-0986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-008-0986-5

Keywords

Schlüsselwörter

Navigation