Skip to main content

Advertisement

Log in

Elevated air humidity modulates bud size and the frequency of bud break in fast-growing deciduous trees: silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Elevated atmospheric humidity reduced bud size by restricting primordium growth and increased the frequency of bud break in fast-growing deciduous trees, but the responses are species-specific.

Abstract

The initiation, development, and growth potential of buds determine the structure of a tree crown. Climate change scenarios project increasing amounts of precipitation at high latitudes in the future, but the effects of a more humid climate on bud size and growth potential remain mostly unexplored. This study investigates the effects of atmospheric humidity on fast-growing deciduous trees, silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.), planted in a unique free-air experimental facility, designed for increasing air humidity during the growing season. Over four consecutive years (2009–2012), the size of overwintering buds was assessed in the upper crown of young trees, and additionally, annual height increments were assessed during the study period. Furthermore, bud contents, probabilities of bud death and break, and subsequent shoot growth were examined. In silver birch, misting effect on height growth depended on year, possibly due to acclimation or variable weather conditions, but bud size was consistently reduced. Nevertheless, misting restricted the growth rather than the initiation of leaf primordia in the bud, and decreased bud size did not translate into changes in the leaf area of future shoots. In contrast, the size of hybrid aspen buds was markedly reduced by misting only in 2009; however, increased humidity promoted bud break, reducing the proportion of dormant buds. The underlying mechanisms causing reduced bud size may involve interactions with shoot growth, but require further study. Although the effect of stimulated bud break is subtle in a given year, cumulative effects may modulate crown structure in the long term, facilitating the acclimation of tree growth to rising humidity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alla A, Camarero J, Rivera P, Montserrat-Martí G (2011) Variant allometric scaling relationships between bud size and secondary shoot growth in Quercus faginea: implications for the climatic modulation of canopy growth. Ann For Sci 68:1245–1254. doi:10.1007/s13595-011-0093-z

    Article  Google Scholar 

  • Alla AQ, Camarero JJ, Montserrat-Martí G (2013) Seasonal and inter-annual variability of bud development as related to climate in two coexisting Mediterranean Quercus species. Ann Bot 111:261–270. doi:10.1093/aob/mcs247

    Article  PubMed Central  PubMed  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260

    Article  PubMed Central  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed 15 June 2014

  • Brunel N, Leduc N, Poupard P, Simoneau P, Mauget J, Viémont J (2002) KNAP2, a class I KN1-like gene is a negative marker of bud growth potential in apple trees (Malus domestica [L.] Borkh.). J Exp Bot 53:2143–2149. doi:10.1093/jxb/erf063

    Article  CAS  PubMed  Google Scholar 

  • Chan S, Radosevich S, Grotta A (2003) Effects of contrasting light and soil moisture availability on the growth and biomass allocation of Douglas-fir and red alder. Can J For Res 33:106–117. doi:10.1139/x02-148

    Article  Google Scholar 

  • Choubane D, Rabot A, Mortreau E, Legourrierec J, Péron T, Foucher F, Ahcène Y, Pelleschi-Travier S, Leduc N, Hamama L, Sakr S (2012) Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. J Plant Physiol 169:1271–1280. doi:10.1016/j.jplph.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  • Cline M, Bhave N, Harrington C (2009) The possible roles of nutrient deprivation and auxin repression in apical control. Trees-Struct Funct 23:489–500. doi:10.1007/s00468-008-0294-8

    Article  CAS  Google Scholar 

  • Cochard H, Coste S, Chanson B, Guehl JM, Nicolini E (2005) Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica). Tree Physiol 25:1545–1552. doi:10.1093/treephys/25.12.1545

    Article  PubMed  Google Scholar 

  • Colombo SJ, Templeton CWG (2006) Bud and crown architecture of white spruce and black spruce. Trees-Struct Funct 20:633–641. doi:10.1007/s00468-006-0078-y

    Article  Google Scholar 

  • Cunningham SC (2006) Effects of vapour pressure deficit on growth of temperate and tropical evergreen rainforest trees of Australia. Acta Oecol 30:399–406. doi:10.1016/j.actao.2006.05.009

    Article  Google Scholar 

  • Demotes-Mainard S, Huché-Thélier L, Morel P, Boumaza R, Guérin V, Sakr S (2013) Temporary water restriction or light intensity limitation promotes branching in rose bush. Sci Hortic 150:432–440. doi:10.1016/j.scienta.2012.12.005

    Article  Google Scholar 

  • Dreyer E (1994) Compared sensitivity of seedlings from 3 woody species (Quercus robur L, Quercus rubra L and Fagus silvatica L) to water logging and associated root hypoxia: effects on water relations and photosynthesis. Ann For Sci 51:417–429. doi:10.1051/forest:19940407

    Article  Google Scholar 

  • Düring H (1979) Wirkungen der Luft- und Bodenfeuchtigkeit auf das vegetative Wachstum und den Wasserhaushalt bei Reben. Vitis 18:211–220

    Google Scholar 

  • Eschrich W, Burchardt R, Essiamah S (1989) The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees-Struct Funct 3:1–10. doi:10.1007/BF00202394

    Article  Google Scholar 

  • Fender A-C, Mantilla-Contreras J, Leuschner C (2011) Multiple environmental control of leaf area and its significance for productivity in beech saplings. Trees-Struct Funct 25:847–857. doi:10.1007/s00468-011-0560-z

    Article  Google Scholar 

  • Fordham MC, Harrison-Murray RS, Knight L, Evered CE (2001) Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. Physiol Plantarum 113:233–240. doi:10.1034/j.1399-3054.2001.1130211.x

    Article  CAS  Google Scholar 

  • Garrett PW, Zahner R (1973) Fascicle density and needle growth responses of red pine to water supply over two seasons. Ecology 54:1328–1334. doi:10.2307/1934195

    Article  Google Scholar 

  • Gordon D, Damiano C, DeJong TM (2006) Preformation in vegetative buds of Prunus persica: factors influencing number of leaf primordia in overwintering buds. Tree Physiol 26:537–544. doi:10.1093/treephys/26.4.537

    Article  CAS  PubMed  Google Scholar 

  • Hanba YT, Moriya A, Kimura K (2004) Effect of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant, Cell Environ 27:413–421. doi:10.1046/j.1365-3040.2004.01154.x

    Article  CAS  Google Scholar 

  • Hansen R, Mander Ü, Soosaar K, Maddison M, Lõhmus K, Kupper P, Kanal A, Sõber J (2013) Greenhouse gas fluxes in an open air humidity manipulation experiment. Landscape Ecol 28:637–649. doi:10.1007/s10980-012-9775-7

    Article  Google Scholar 

  • Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol 23:931–936. doi:10.1093/treephys/23.13.931

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Hunter JH, Hsiao AI, McIntyre GI (1985) Some effects of humidity on the growth and development of Cirsium arvense. Bot Gaz 146:483–488

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press

  • Jordan L, Devitt D, Morris R, Neuman D (2001) Foliar damage to ornamental trees sprinkler-irrigated with reuse water. Irrig Sci 21:17–25. doi:10.1007/s00271-001-0050-y

    Article  Google Scholar 

  • Kimura K, Ishida A, Uemura A, Matsumoto Y, Terashima I (1998) Effects of current-year and previous-year PPFDs on shoot gross morphology and leaf properties in Fagus japonica. Tree Physiol 18:495–498. doi:10.1093/treephys/18.7.459

    Article  Google Scholar 

  • Kont A, Jaagus J, Aunap R (2003) Climate change scenarios and the effect of sea-level rise for Estonia. Global Planet Change 36:1–15. doi:10.1016/S0921-8181(02)00149-2

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

  • Kupper P, Sõber J, Sellin A, Lõhmus K, Tullus A, Räim O, Lubenets K, Tulva I, Uri V, Zobel M, Kull O, Sõber A (2011) An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ Exp Bot 72:432–438. doi:10.1016/j.envexpbot.2010.09.003

    Article  Google Scholar 

  • Landhäusser SM, Pinno BD, Lieffers VJ, Chow PS (2012) Partitioning of carbon allocation to reserves or growth determines future performance of aspen seedlings. Forest Ecol Manag 275:43–51. doi:10.1016/j.foreco.2012.03.010

    Article  Google Scholar 

  • Laube J, Sparks TH, Estrella N, Menzel A (2014) Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytol 202:350–355. doi:10.1111/nph.12680

    Article  PubMed  Google Scholar 

  • Lauri P-É, Bourdel G, Trottier C, Cochard H (2008) Apple shoot architecture: evidence for strong variability of bud size and composition and hydraulics within a branching zone. New Phytol 178:798–807. doi:10.1111/j.1469-8137.2008.02416.x

    Article  PubMed  Google Scholar 

  • Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits. Forest Ecol and Manag 256:648–655. doi:10.1016/j.foreco.2008.05.008

    Article  Google Scholar 

  • Macey DE, Arnott JT (1986) The effect of moderate moisture and nutrient stress on bud formation and growth of container-grown white spruce seedlings. Can J For Res 16:949–954. doi:10.1139/x86-168

    Article  Google Scholar 

  • Maillette L (1982) Structural dynamics of silver birch. I. The fates of buds. J Appl Ecol 19:203–218

    Article  Google Scholar 

  • Marcelis-van Acker CAM (1994) Effect of assimilate supply on development and growth potential of axillary buds in roses. Ann Bot 73:415–420. doi:10.1006/anbo.1994.1051

    Article  Google Scholar 

  • Marsden BJ, Lieffers VJ, Zwiazek JJ (1996) The effect of humidity on photosynthesis and water relations of white spruce seedlings during the early establishment phase. Can J For Res 26:1015–1021. doi:10.1139/x26-112

    Article  Google Scholar 

  • McIntyre GI (1987) Studies on the growth and development of Agropyron repens: interacting effects of humidity, calcium, and nitrogen on growth of the rhizome apex and lateral buds. Can J Bot 65:1427–1432. doi:10.1139/b87-197

    Article  Google Scholar 

  • Montserrat-Martí G, Camarero J, Palacio S, Pérez-Rontomé C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees-Struct Funct 23:787–799. doi:10.1007/s00468-009-0320-5

    Article  Google Scholar 

  • Niglas A, Kupper P, Tullus A, Sellin A (2014) Responses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions. AoB PLANTS. doi: 10.1093/aobpla/plu021 (in press)

  • Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526. doi:10.1046/j.1365-3040.1999.00513.x

    Article  Google Scholar 

  • Parts K, Tedersoo L, Lõhmus K, Kupper P, Rosenvald K, Sõber A, Ostonen I (2013) Increased air humidity and understory composition shape short root traits and the colonizing ectomycorrhizal fungal community in silver birch stands. Forest Ecol Manag 310:720–728. doi:10.1016/j.foreco.2013.09.017

    Article  Google Scholar 

  • Pearson M, Mansfield TA (1994) Effects of exposure to ozone and water stress on the following season’s growth of beech (Fagus sylvatica L.). New Phytol 126:511–515. doi:10.1111/j.1469-8137.1994.tb04249.x

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2014) nlme: Linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN.R-project.org/package=nlme. Accessed 15 June 2014

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 June 2014

  • Remphrey WR, Davidson CG (1994) Shoot preformation in clones of Fraxinus pennsylvanica in relation to site and year of bud formation. Trees-Struct Funct 8:126–131. doi:10.1007/BF00196636

    Article  Google Scholar 

  • Roberts JJ, Zwiazek JJ (2001) Growth, morphology, and gas exchange in white spruce (Picea glauca) seedlings acclimated to different humidity conditions. Can J For Res 31:1038–1045. doi:10.1139/x01-043

    Article  Google Scholar 

  • Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, Aosaar J, Varik M, Sõber J, Niglas A, Hansen R, Rohula G, Kukk M, Sõber A, Lõhmus K (2014) The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation - Acclimation mechanisms and capacity. For Ecol Manage 330:252–260. doi:10.1016/j.foreco.2014.07.016

    Article  Google Scholar 

  • Sanz-Pérez V, Castro-Díez P (2010) Summer water stress and shade alter bud size and budburst date in three mediterranean Quercus species. Trees-Struct Funct 24:89–97. doi:10.1007/s00468-009-0381-5

    Article  Google Scholar 

  • Sellin A, Tullus A, Niglas A, Õunapuu E, Karusion A, Lõhmus K (2013) Humidity-driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (Betula pendula). Ecol Res 28:523–535. doi:10.1007/s11284-013-1041-1

    Article  CAS  Google Scholar 

  • Slaney M, Wallin G, Medhurst J, Linder S (2007) Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce. Tree Physiol 27:301–312. doi:10.1093/treephys/27.2.301

    Article  PubMed  Google Scholar 

  • Tibbitts TW (1979) Humidity and plants. Bioscience 29:358–363. doi:10.2307/1307692

    Article  Google Scholar 

  • Tromp J (1996) Sylleptic shoot formation in young apple trees exposed to various soil temperature and air humidity regimes in three successive periods of the growing season. Ann Bot 77:63–70. doi:10.1006/anbo.1996.0008

    Article  Google Scholar 

  • Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012) Climate change at northern latitudes: Rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLoS ONE. doi:10.1371/journal.pone.0042648

    PubMed Central  PubMed  Google Scholar 

Download references

Author contribution statement

MK collected the data set on buds, carried out analyses, and wrote the paper. OR and IT measured annual height increments. JS provided the data on weather conditions during the study period and was responsible for running the FAHM experiment. AS conceived the current study and together with KL provided feedback on earlier drafts of the manuscript.

Acknowledgments

The authors thank Kertu Lõhmus, Gristin Rohula, and Kaarin Parts for help during field work, Priit Kupper for information on environmental variables in misting plots, and Marit Maidla and Nicholas James Barker for language revision. We also thank the two anonymous reviewers for their constructive comments. This study was supported by the Estonian Science Foundation (Grant no 9186), by the Estonian Ministry of Education and Research (target financing project SF0180025s12), the European Regional Development Fund (Centre of Excellence in Environmental Adaptation), and project no. 3.2.0802.11-0043 (BioAtmos).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarja Kukk.

Additional information

Communicated by M. Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukk, M., Räim, O., Tulva, I. et al. Elevated air humidity modulates bud size and the frequency of bud break in fast-growing deciduous trees: silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Trees 29, 1381–1393 (2015). https://doi.org/10.1007/s00468-015-1215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1215-2

Keywords

Navigation