Skip to main content
Log in

The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

Primordia from buds of sun and shade twigs of European beech (Fagus sylvatica L.) were collected six times a year for anatomical investigations. Differentiation into sun-leaf and shade-leaf primordia was first observed in early August. Sun-leaf primordia had five, and shade-leaf primordia four layers of mesophyll meristem cells. With potted graft unions of beeches possible structural changes of leaf primordia were investigated. Trees adapted to shade develop sun-leaf primordia when put into full daylight, provided the transfer happened before July. Trees adapted to full daylight developed leaf primordia which remained structurally sun-leaf primordia when the plant was kept under shade conditions. Shadeleaf branches of young beech trees cut in February in order to expose the shade buds to full daylight developed either shade leaves or intermediate shade/sun leaves. These experiments show that the subtending leaf may provide the developing axillary bud with photoassimilates, but its character, whether sun or shade leaf, has no influence on the character of the developing leaf primordia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhning RH, Burnside CA (1956) The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants. Am J Bot 43: 557–561

    Google Scholar 

  • Czeczuga B (1987) Carotenoid contents in leaves grown under various light intensities. Biochem Syst Ecol 15: 523–527

    Google Scholar 

  • Eller BM, Glättli R, Flach B (1981) Optische Eigenschaften und Pigmente von Sonnen- und Schattenblättern der Rotbuche (Fagus silvatica L.) und der Blutbuche (Fagus silvatica cv atropunicea). Flora 171: 170–185

    Google Scholar 

  • Gäumann E (1935) Der Stoffhaushalt der Buche (Fagus silvatica L.) im Laufe eines Jahres. Ber Schweiz Bot Ges 44: 157–334

    Google Scholar 

  • Goulet F, Bellefleur P (1986) Leaf morphology plasticity in response to light environment in deciduous tree species and its implication on forest succession. Can J For Res 16: 1192–1195

    Google Scholar 

  • Hansen HC (1959) Der Einfluß des Lichtes auf die Bildung von Licht- und Schattenblättern der Buche (Fagus sylvatica). Physiol Plant 12: 545–550

    Google Scholar 

  • Hoddinott J, Hall LM (1982) The responses of photosynthesis and translocation rates to changes in the ζ-ratio of light. Can J Bot 60: 1285–1291

    Google Scholar 

  • Jost L (1893) Ueber Beziehungen zwischen der Blattentwicklung und der Gefässbildung in der Pflanze. Bot Ztg 51: 89–138

    Google Scholar 

  • Klebs G (1914) Über das Treiben der einheimischen Bäume, speziell der Buche. Abh Heidelb Akad Wiss Math Naturwiss Kl 3. Winter, Heidelberg

  • Larson PR (1975) Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy. Am J Bot 62: 1084–1099

    Google Scholar 

  • Lee DW, Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73: 1100–1108

    Google Scholar 

  • Lichtenthaler H (1985) Differences in morphology and chemical composition of leaves grown at different light intensities and qualitities. In: Baker NR, Davies WJ, Ong CK (eds) Control of leaf growth. Cambridge University Press, Cambridge, pp 201–221

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Res 2: 115–141

    Google Scholar 

  • Magnus W (1913) Der physiologische Atavismus unserer Eichen und Buche. Biol Centralbl 33: 309–337

    Google Scholar 

  • Maksymowych R (1973) Analysis of leaf development. Cambridge University Press, Cambridge

    Google Scholar 

  • McMillen GG, McClendon JH (1983) Dependence of photosynthetic rates on leaf density thickness in deciduous woody plants grown in sun and shade. Plant Physiol 72: 674–678

    Google Scholar 

  • Nordhausen M (1903) Über Sonnen- und Schattenblätter. Ber Dtsch Bot Ges 21: 30–45

    Google Scholar 

  • Pukacki P, Giertych M, Chalupka W (1980) Light filtering function of bud scales in woody plants. Planta 150: 132–133

    Google Scholar 

  • Rühle W, Wild A (1985) Die Anpassung des Photosyntheseapparates höherer Pflanzen an die Lichtbedingungen. Naturwissenschaften 72: 10–16

    Google Scholar 

  • Seybold A, Weissweiler A (1942) Spektrophotometrische Messungen an grünen Pflanzen und an Chlorophyll-Lösungen. Bot Arch 43: 252–290

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    CAS  PubMed  Google Scholar 

  • Tanner V, Eller BM (1986) Veränderungen der spektralen Eigenschaften der Blätter der Buche (Fagus silvatica L.) von Laubaustrieb bis Laubfall. Allg Forst Jagdztg 157: 108–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschrich, W., Burchardt, R. & Essiamah, S. The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees 3, 1–10 (1989). https://doi.org/10.1007/BF00202394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202394

Key words

Navigation