Skip to main content
Log in

Substrate oscillations boost recombinant protein release from Escherichia coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli. Quantitative analysis of protein in independent bioreactor runs could demonstrate that a defined oscillatory feeding profile was found to improve protein release, about 60 %, compared to the conventional constant feeding rate. The process technology included an oscillatory post-induction feed profile with the frequency of 4 min. The feed rate was oscillated triangularly between a maximum (1.3-fold of the maximum feed rate achieved at the end of the fed-batch phase) and a minimum (45 % of the maximum). The significant improvement indicates the potential to maximize the production rate, while this oscillatory feed profile can be easily scaled to industrial processes. Moreover, quantitative analysis of the primary metabolism revealed that the carbon dioxide yield can be used to identify the preferred feeding profile. This approach is therefore in line with the initiative of process analytical technology for science-based process understanding in process development and process control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Waites MJ, Morgan Neil L, Rockey John S, Gary H (2001) Industrial microbiology: an introduction. Wiley-Blackwell, London

    Google Scholar 

  2. Balasundaram B, Harrison S, Bracewell DG (2009) Advances in product release strategies and impact on bioprocess design. Trends Biotechnol 27:477–485

    Article  CAS  Google Scholar 

  3. Shokri A, Sanden A, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60:654–664

    Article  CAS  Google Scholar 

  4. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  Google Scholar 

  5. Naglak TJ, Wang HY (1990) Recovery of a foreign protein from the periplasm of Escherichia coli by chemical permeabilization. Enzy Microb Tech 12:603–611

    Article  CAS  Google Scholar 

  6. Bothmann H, Plückthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16:376–380

    Article  CAS  Google Scholar 

  7. Hayhurst A, Harris WJ (1999) Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif 15:336–343

    Article  CAS  Google Scholar 

  8. Nagahari K, Kanaya S, Munakata K, Aoyagi Y, Mizushima S (1985) Secretion into the culture medium of a foreign gene product from Escherichia coli: use of the ompF gene for secretion of human beta-endorphin. EMBO J 4:3589–3592

    CAS  Google Scholar 

  9. Pugsley AP (1992) Translocation of a folded protein across the outer membrane in Escherichia coli. Proc Natl Acad Sci 89:12058–12062

    Article  CAS  Google Scholar 

  10. Gitter B, Diefenbach R, Keweloh H, Riesenberg D (1995) Influence of stringent and relaxed response on excretion of recombinant proteins and fatty acid composition in Escherichia coli. Appl Microbiol Biotechnol 43:89–92

    Article  CAS  Google Scholar 

  11. Gitter B, Riesenberg D (1996) Influence of phospholipid composition on excretion of beta-lactamase from a stringent/relaxed Escherichia coli K12 strain pair. Microbiol Res 151:337–342

    Article  CAS  Google Scholar 

  12. DiRienzo JM, Inouye M (1979) Lipid fluidity-dependent biosynthesis and assembly of the outer membrane proteins of E. coli. Cell 17:155–161

    Article  CAS  Google Scholar 

  13. Arneborg N, Salskov-Iversen A, Mathiasen T (1993) The effect of growth rate and other growth conditions on the lipid composition of Escherichia coli. Appl Microbiol Biotechnol 39:353–357

    Article  CAS  Google Scholar 

  14. McGarrity JT, Armstrong JB (1981) The effect of temperature and other growth conditions on the fatty acid composition of Escherichia coli. Can J Microbiol 27:835–840

    Article  CAS  Google Scholar 

  15. Knivett VA, Cullen J (1965) Some factors affecting cyclopropane acid formation in Escherichia coli. Biochem J 96:771–776

    CAS  Google Scholar 

  16. Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392

    Article  CAS  Google Scholar 

  17. Caspeta L, Flores N, Pérez NO, Bolívar F, Ramírez OT (2009) The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study. Biotechnol Bioeng 102:468–482

    Article  CAS  Google Scholar 

  18. Neubauer P, Ahman M, Törnkvist M, Larsson G, Enfors SO (1995) Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. J Biotechnol 43:195–204

    Article  CAS  Google Scholar 

  19. Amanullah A, McFarlane CM, Emery AN, Nienow AW (2001) Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 73:390–399

    Article  CAS  Google Scholar 

  20. Bylund F, Guillard F, Enfors SO, Trägradh C, Larsson G (1999) Scale down of recombinant protein production: a comparative study of scaling performance. Bioprocess Biosyst Eng 20:377–389

    Article  CAS  Google Scholar 

  21. Jazini M, Herwig C (2011) Effect of post-induction substrate oscillation on recombinant alkaline phosphatase production expressed in Escherichia coli. J Biosci Bioeng 112:606–610

    Article  CAS  Google Scholar 

  22. Lara A, Galindo E, RamÃrez O, Palomares L (2006) Living with heterogeneities in bioreactors. Mol Biotechnol 34:355–381

    Article  CAS  Google Scholar 

  23. Herwig C, Marison I, Von Stockar U (2001) On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol Bioeng 75:345–354

    Article  CAS  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  25. Sanden AM, Prytz I, Tubulekas I, Förrberg C, Le H, Hektor A, Neubauer P, Pragai Z, Harwood C, Ward A, Picon A, De Mattos JT, Postma P, Farewell A, Nyström T, Reeh S, Pedersen S, Larsson G (2003) Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol Bioeng 81:158–166

    Article  CAS  Google Scholar 

  26. Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of l-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103

    Article  CAS  Google Scholar 

  27. Andersson L, Strandberg L, Enfors SO (1996) Cell segregation and lysis have profound effects on the growth of Escherichia coli in high cell density fed batch cultures. Biotechnol Prog 12:190–195

    Article  CAS  Google Scholar 

  28. Seyfzadeh M, Keener J, Nomura M (1993) spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci U S A 90:11004–11008

    Article  CAS  Google Scholar 

  29. Stein JP Jr, Bloch KE (1976) Inhibition of E. coli beta-hydroxydecanoyl thioester dehydrase by ppGpp. Biochem Biophys Res Commun 73:881–884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the concept of the PhD thesis of Mr. Mohammadhadi Jazini and authors fully acknowledge joint supervision of professor Roosta Azad, the professor of Sharif University of Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Herwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazini, M., Herwig, C. Substrate oscillations boost recombinant protein release from Escherichia coli . Bioprocess Biosyst Eng 37, 881–890 (2014). https://doi.org/10.1007/s00449-013-1059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1059-3

Keywords

Navigation