Skip to main content
Log in

Pentynyl dextran as a support matrix for immobilization of serine protease subtilisin Carlsberg and its use for transesterification of N-acetyl-l-phenylalanine ethyl ester in organic media

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, serine protease (subtilisin Carlsberg) was immobilized on pentynyl dextran (PyD, O–alkynyl ether of dextran, 1) and used for the transesterification of N-acetyl-l-phenylalanine ethyl ester (2) with different aliphatic (1-propanol, 1-butanol, 1-pentanol, 1-hexanol) and aromatic (benzyl alcohol, 2-phenyl ethanol, 4-phenyl-1-butanol) alcohols in tetrahydrofuran (THF). The effect of carbon chain length in aliphatic and aromatic alcohols on initial and average transesterification rate, transesterification activity of immobilized enzyme and yield of the reaction under selected reaction conditions was investigated. The transesterification reactivity of the enzyme and yield of the reaction increased as the chain length of the alcohols decreased. Furthermore, almost no change in yield was observed when the immobilized enzyme was repeatedly used for selected alcohols over six cycles. Intrinsic fluorescence analysis showed that the catalytic activity of the immobilized enzyme in THF was maintained due to retention of the tertiary structure of the enzyme after immobilization on PyD (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APAEE:

N-acetyl-l-phenylalanine ethyl ester (2)

DS:

Degree of substitution

EA:

Elemental analysis

PyD:

Pentynyl dextran (1)

SC:

Subtilisin Carlsberg

Trp:

Tryptophan

References

  1. Macquarrie DJ, Bacheva A (2008) Efficient subtilisin immobilization in chitosan, and peptide synthesis using chitosan-subtilisin biocatalytic films. Green Chem 10:692–695

    Article  CAS  Google Scholar 

  2. Alloue W, Destain J, El Medjoub T, Ghalfi H, Kabran P, Thonart P (2008) Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. App Biochem Biotechnol 150:51–63

    Article  CAS  Google Scholar 

  3. Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J Mol Catal B Enzym 57:171–176

    Article  CAS  Google Scholar 

  4. Liu X, Guan Y, Shen R, Liu H (2005) Immobilization of lipase onto micron-size magnetic beads. J Chromatog B 822:91–97

    Article  CAS  Google Scholar 

  5. Gomes F, Silva G, Pinatti D, Conte R, de Castro H (2005) Wood cellulignin as an alternative matrix for enzyme immobilization. Appl Biochem Biotechnol 121:255–268

    Article  Google Scholar 

  6. James J, Simpson BK, Marshall MR (1996) Application of enzymes in food processing. Crit Rev Food Sci Nutr 36:437–463

    Article  CAS  Google Scholar 

  7. Yoshimaru T, Matsumoto K, Kuramoto Y, Yamada K, Sugano M (1997) Preparation of microcapsulated enzymes for lowering the allergenic activity of foods. J Agric Food Chem 45:4178–4182

    Article  CAS  Google Scholar 

  8. Santos AM, Montañez Clemente I, Barletta G, Griebenow K (1999) Activation of serine protease subtilisin Carlsberg in organic solvents: combined effect of methyl-β-cyclodextrin and water. Biotechnol Lett 21:1113–1118

    Article  CAS  Google Scholar 

  9. Zaks A, Klibanov AM (1988) The effect of water on enzyme action in organic media. J Biol Chem 263:8017–8021

    CAS  Google Scholar 

  10. Griebenow K, Laureano YD, Santos AM, Clemente IM, Rodríguez L, Vidal MW, Barletta G (1999) Improved enzyme activity and enantioselectivity in organic solvents by methyl-β-cyclodextrin. J Am Chem Soc 121:8157–8163

    Article  CAS  Google Scholar 

  11. Khmelnitsky YL, Welch SH, Clark DS, Dordick JS (1994) Salts dramatically enhance activity of enzymes suspended in organic solvents. J Am Chem Soc 116:2647–2648

    Article  CAS  Google Scholar 

  12. Lindsay JP, Clark DS, Dordick JS (2004) Combinatorial formulation of biocatalyst preparations for increased activity in organic solvents: salt activation of penicillin amidase. Biotechnol Bioeng 85:553–560

    Article  CAS  Google Scholar 

  13. Ooe Y, Yamamoto S, Kobayashi M, Kise H (1999) Increase of catalytic activity of α-chymotrypsin in organic solvent by co-lyophilization with cyclodextrins. Biotechnol Lett 21:385–389

    Article  CAS  Google Scholar 

  14. Ru MT, Hirokane SY, Lo AS, Dordick JS, Reimer JA, Clark DS (2000) On the salt-induced activation of lyophilized enzymes in organic solvents: effect of salt kosmotropicity on enzyme activity. J Am Chem Soc 122:1565–1571

    Article  CAS  Google Scholar 

  15. Bacheva A, Isakov M, Lysogorskaya E, Macquarrie D, Philippova I (2008) Biocomposite of subtilisin Carlsberg with chitosan as an effective biocatalyst for hydrolysis and synthesis of peptides. Russ J Bioorg Chem 34:334–338

    Article  CAS  Google Scholar 

  16. Hedström M, Plieva F, Galaev IY, Mattiasson B (2008) Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization. Anal Bioanal Chem 390:907–912

    Article  CAS  Google Scholar 

  17. Kise H, Hayakawa A (1991) Immobilization of proteases to porous chitosan beads and their catalysis for ester and peptide synthesis in organic solvents. Enzyme Microb Technol 13:584–588

    Article  CAS  Google Scholar 

  18. Tahir MN, Bork C, Risberg A, Horst JC, Komoß C, Vollmer A, Mischnick P (2010) Alkynyl ethers of glucans: substituent distribution in propargyl-, pentynyl- and hexynyldextrans and -amyloses and support for silver nanoparticle formation. Macromol Chem Phys 211:1648–1662

    Article  CAS  Google Scholar 

  19. Tankam PF, Mischnick P, Hopf H, Jones PG (2007) Modification of methyl O–propargyl-d-glucosides: model studies for the synthesis of alkynyl based functional polysaccharides. Carbohydr Res 342:2031–2048

    Article  CAS  Google Scholar 

  20. Tankam PF, Müller R, Mischnick P, Hopf H (2007) Alkynyl polysaccharides: synthesis of propargyl potato starch followed by subsequent derivatizations. Carbohydr Res 342:2049–2060

    Article  CAS  Google Scholar 

  21. Naka K, Yamashita R, Nakamura T, Ohki A, Shigeru M, Aoi K, Takasu A, Okada M (1998) Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent. Int J Biol Macromol 23:259–262

    Article  Google Scholar 

  22. Yang G, Wu J, Xu G, Yang L (2009) Enhancement of the activity and enantioselectivity of lipase in organic systems by immobilization onto low-cost support. J Mol Catal B Enzym 57:96–103

    Article  CAS  Google Scholar 

  23. Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B Enzym 58:103–109

    Article  CAS  Google Scholar 

  24. Ozmen EY, Sezgin M, Yilmaz M (2009) Synthesis and characterization of cyclodextrin-based polymers as a support for immobilization of Candida rugosa lipase. J Mol Catal B Enzym 57:109–114

    Article  CAS  Google Scholar 

  25. Mariotti F, Tomé D, Mirand PP (2008) Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48:177–184

    Article  CAS  Google Scholar 

  26. Spurlin HM (1939) Arrangement of substituents in cellulose derivatives. J Am Chem Soc 61:2222–2227

    Article  CAS  Google Scholar 

  27. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR (2001) Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym 11:657–663

    Article  Google Scholar 

  28. Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catalysis 1:956–968

    Article  CAS  Google Scholar 

  29. Deng L, Tan T, Wang F, Xu X (2003) Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur J Lipid Sci Technol 105:727–734

    Article  CAS  Google Scholar 

  30. Tahir MN, Adnan A, Strömberg E, Mischnick P (2012) Stability of lipase immobilized on O–pentynyl dextran. Bioprocess Biosyst Eng 35:535–544

    Article  CAS  Google Scholar 

  31. Chang SW, Shaw JF, Yang KH, Chang SF, Shieh CJ (2008) Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(γ- glutamic acid) by RSM. Bioresour Technol 99:2800–2805

    Article  CAS  Google Scholar 

  32. Tahir MN, Adnan A, Mischnick P (2009) Lipase immobilization on O-propargyl and O-pentynyl dextrans and its application for the synthesis of click beetle pheromones. Process Biochem 44:1276–1283

    Article  CAS  Google Scholar 

  33. Chen B, Pernodet N, Rafailovich MH, Bakhtina A, Gross RA (2008) Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading. Langmuir 24:13457–13464

    Article  CAS  Google Scholar 

  34. Chatterjee S, Barbora L, Cameotra S, Mahanta P, Goswami P (2009) Silk-fiber immobilized lipase-catalyzed hydrolysis of emulsified sunflower oil. Appl Biochem Biotechnol 157:593–600

    Article  CAS  Google Scholar 

  35. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  36. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    Article  CAS  Google Scholar 

  37. Farivar F, Moosavi-Movahedi AA, Sefidbakht Y, Nazari K, Hong J, Sheibani N (2010) Cytochrome c in sodium dodecyl sulfate reverse micelle nanocage: from a classic electron carrier protein to an artificial peroxidase enzyme. Biochem Eng J 49:89–94

    Article  CAS  Google Scholar 

  38. Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJS, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chem Phys Chem 10:1492–1499

    Article  CAS  Google Scholar 

  39. Pasta P, Riva S, Carrea G (1988) Circular dichroism and fluorescence of polyethylene glycol-subtilisin in organic solvents. FEBS Lett 236:329–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Konkuk University (KU Brain pool) is greatfully acknowledged. This work is also supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0024008 and NRF-2011-619-E0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunho Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahir, M.N., Cho, E., Mischnick, P. et al. Pentynyl dextran as a support matrix for immobilization of serine protease subtilisin Carlsberg and its use for transesterification of N-acetyl-l-phenylalanine ethyl ester in organic media. Bioprocess Biosyst Eng 37, 687–695 (2014). https://doi.org/10.1007/s00449-013-1038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1038-8

Keywords

Navigation