Skip to main content
Log in

Physical adsorption used to the immobilization of Burkholderia cepacia lipase into powder polymeric supports

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to combine distinctive supports with a feasible, easy and cleaning method to lipase immobilization. Commercial lipase from Burkholderia cepacia is physically adsorbed using polymeric powders such as polyhydroxybutyrate (PHB), polyhydroxybutyrate-co-hydroxyvalerate (PHBV) and copolymer styrene-divinylbenzene (St-DVB). It is found that the immobilization on PHB has a high amount of the lipase per support mass (1065 U g−1). The activation energy also shows a value higher than the lipase immobilized onto both PHBV (348 U g−1) and St-DVB (355 U g−1). FTIR, TG, DSC and XRD techniques are used to polymer powders and immobilized lipase characterization. Morphological arrays, loss masses, enthalpy values and crystallinity degrees are evaluated. In order to analyze the morphological aspects of the raw polymers after alcohol treatment (before immobilization) and the immobilized lipase, the optical microscopy analysis is used. The immobilized Burkholderia cepacia lipase provides distinctive behavior in the polymer powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Macario A, Verri F, Diaz U, Corma A, Giordano G. Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today. 2013. https://doi.org/10.1016/j.cattod.2012.07.014.

    Article  Google Scholar 

  2. Guo J, Sun S, Liu J. Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.117323.

    Article  Google Scholar 

  3. Padilha GS, Campos VAB, Costa MC, Franco TT. Multi-walled carbon nanotubes used as support for lipase from Burkholderia cepacia. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7467-5.

    Article  Google Scholar 

  4. Nady D, Zaki AH, Raslan M, Hozayen W. Enhancement ofmicrobial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.09.240.

    Article  PubMed  Google Scholar 

  5. Mijone PD, Bôas RNV, Bento HBS, Reis CER, Castro HF. Coating and incorporation of iron oxides into a magnetic-polymer composite to be used as lipase support for ester syntheses. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2019.10.100.

    Article  Google Scholar 

  6. Souza RL, Faria ELP, Figueiredo RT, Fricks AT, Zanin GM, Santos OAA, Lima AS, Soares CMF. Use of polyethylene glycol in the process of sol–gel encapsulation of Burkholderia cepacia lipase. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-3663-0.

    Article  Google Scholar 

  7. Mesa M, Pereañez JA, Preciado LM, Bernal C. How the Triton X-100 modulates the activity/stability of the Thermomyces lanuginose lipase: insights from experimental and molecular docking approaches. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2018.09.009.

    Article  PubMed  Google Scholar 

  8. Rios NS, Pinheiro BB, Pinheiro MP, Bezerra RM, Santos JCS, Gonçalves LRB. Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem. 2018. https://doi.org/10.1016/j.procbio.2018.09.003.

    Article  Google Scholar 

  9. Moreira WC, Elias ALP, Osório WR, Padilha GS. Alternative method to improve the ethyl valerate yield using an immobilised Burkholderia cepacia lipase. J Microencapsul. 2019. https://doi.org/10.1080/02652048.2019.1626927.

    Article  PubMed  Google Scholar 

  10. Bilal M, Iqbal HMN. Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int J Biol Macromol. 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.152.

    Article  PubMed  Google Scholar 

  11. Foresti ML, Ferreira ML. Ethanol pretreatment effect and particle diameter issues on the adsorption of Candida rugosa lipase onto polypropylene powder. Appl Surf Sci. 2004. https://doi.org/10.1016/j.apsusc.2004.05.195.

    Article  Google Scholar 

  12. Barbe S, Lafaquière V, Guieysse D, Monsan P, Remaud-Siméon M, André I. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Proteins. 2009. https://doi.org/10.1002/prot.22462.

    Article  PubMed  Google Scholar 

  13. Carvalho NB, Barbosa JMP, Oliveira MVS, Fricks AT, Lima AS, Soares CMF. Biochemical properties of Bacillus sp. ITP-001 lipase immobilized with a sol gel process. Quim Nova. 2013. https://doi.org/10.1590/S0100-40422013000100010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Padilha GS, Tambourgi EB, Alegre RM. Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chem Eng Commun. 2018. https://doi.org/10.1080/00986445.2017.1370707.

    Article  Google Scholar 

  15. Alves MD, Aracri FM, Cren EC, Mendes AA. Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J. 2017. https://doi.org/10.1016/j.cej.2016.11.069.

    Article  Google Scholar 

  16. Bento HBS, Castro HF, Oliveira PC, Freitas L. Magnetized poly(STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. J Magn Magn Mater. 2017. https://doi.org/10.1016/j.jmmm.2016.11.061.

    Article  Google Scholar 

  17. Rodrigues RC, Virgen-Ortíz JJ, Santos JCS, Berenguer-Murcia A, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.04.003.

    Article  PubMed  Google Scholar 

  18. Heitmann AP, Patrício PSO, Coura IR, Pedroso EF, Souza PP, Mansur HS, Mansur A, Oliveira LCA. Nanostructured niobium oxyhydroxide dispersed Poly(3-hydroxybutyrate) (PHB) films: highly efficient photocatalysts fordegradation methylene blue dye. Appl Catal B-Environ. 2016. https://doi.org/10.1016/j.apcatb.2016.02.031.

    Article  Google Scholar 

  19. Lau SC, Lim HN, Basri M, Masoumi HRF, Tajudin AA, Huang NM, Pandikumar A, Chia CH, Andou Y. Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0104695.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singh S, Mohanty AK. Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol. 2007. https://doi.org/10.1016/j.compscitech.2006.11.009.

    Article  Google Scholar 

  21. Pandian SRK, Deepak V, Muniyandi J, Rameshkumae N, Gurunathan S. Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloid Surf B. 2009. https://doi.org/10.1016/j.colsurfb.2009.07.029.

    Article  Google Scholar 

  22. Martins AB, Friedrich JLR, Cavalheiro JC, Garcia-Galan C, Barbosa O, Ayub MAZ, Fernandez-Labuente R, Rodrigues RC. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresour Technol. 2013. https://doi.org/10.1016/j.biortech.2013.02.052.

    Article  PubMed  Google Scholar 

  23. Silva NCA, Miranda JS, Bolina ICA, Silva WC, Hirata DBH, Castro HF, Mendes AA. Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochem Eng J. 2014. https://doi.org/10.1016/j.bej.2013.11.015.

    Article  Google Scholar 

  24. Ramos EZ, Miotti Júnior RH, Castro PF, Tardioli PW, Mendes AA, Fernandez-Lafuente R, Hirata DB. Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: characterization of the catalytic properties in hydrolysis and esterification reactions. J Mol Catal B-Enzym. 2015. https://doi.org/10.1016/j.molcatb.2015.05.009.

    Article  Google Scholar 

  25. Cabrera-Padilla RY, Lisboa MC, Pereira MM, Figueiredo RT, Franceschi E, Fricks AT, Lima AS, Silva DP, Soares CMF. Immobilization of Candida rugosa lipase onto an eco-friendly support in the presence of ionic liquid. Bioproc Biosyst Eng. 2015. https://doi.org/10.1007/s00440-014-1322-2.

    Article  Google Scholar 

  26. Vilas Bôas RN, Ceron AA, Bento HBS, Castro HF. Application of an immobilized Rhizopus oryzae lipase to batch and continuous ester synthesis with a mixture of a lauric acid and fusel oil. Biomass Bioenerg. 2018. https://doi.org/10.1016/j.biombioe.2018.09.011.

    Article  Google Scholar 

  27. Martins SRS, Andrade SMS, Fricks AT, Lima AS, Silva DP, Figueiredo RT, Freitas LS, Cabrera-Padilla RY, Soares CMF, Souza RL. Ionic liquid synergistic effect between preparation of hybrid supports and immobilization of lipase applied to esters production. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10408-4.

    Article  Google Scholar 

  28. Persson M, Wehtje E, Adlercreutz P. Immobilisation of lipases by adsorption and deposition: high protein loading gives lower water activity optimum. Biotechnol Lett. 2000;22:1571–5.

    Article  CAS  Google Scholar 

  29. Ramezani M, Amoozegar MA, Ventosa A. Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Ann Microbiol. 2015. https://doi.org/10.1007/s13213-014-0887-y.

    Article  Google Scholar 

  30. Li T, Liu H, Zeng L, Yang S, Li Z, Zhang J, Zhou X. Macroporous magnetic poly (styrene–divinylbenzene) nanocomposites prepared via magnetite nanoparticles-stabilized high internal phase emulsions. J Mater Chem. 2011. https://doi.org/10.1019/C1JM10799B.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pradhan S, Borah AJ, Poddar MK, Dikshit PK, Rohidas L, Moholkar VS. Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresour Technol. 2017. https://doi.org/10.1016/j.biortech.2017.03.11.

    Article  PubMed  Google Scholar 

  32. Nakagawa H, Tsuge S. Characterization of styrene-divinylbenzene copolymers by high-resolution pyrolysis-gas chromatography. Macromolecules. 1985. https://doi.org/10.1021/ma00152a046.

    Article  Google Scholar 

  33. Shi K, Jing J, Song L, Su T, Wang Z. Enzymatic hydrolysis of polyester: degradation of poly (ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.12.105.

    Article  PubMed  Google Scholar 

  34. Thiré RMSM, Arruda LC, Barreto LS. Morphology and thermal properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/attapulgite nanocomposites. Mat Res. 2011. https://doi.org/10.1590/S1516-14392011005000046.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by FAEPEX/UNICAMP (2021/19) and FAPESP (2016/13352-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana da Silva Padilha.

Ethics declarations

Conflict of interest

The authors declare have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 103 kb)

Supplementary file2 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, W.M., Bortolozo, A.D., Osório, W.R. et al. Physical adsorption used to the immobilization of Burkholderia cepacia lipase into powder polymeric supports. J Therm Anal Calorim 147, 3071–3081 (2022). https://doi.org/10.1007/s10973-021-10714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10714-5

Keywords

Navigation