Skip to main content
Log in

Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450–500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as ‘basaltic ignimbrites’. The recognition in monogenetic volcanism of such pyroclastic products, which may extend several kilometres from source, has an important consequence for hazard assessment in these volcanic fields, which previously have been considered to present only minor hazards and risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araña V, Aparicio A, Martín-Escorza C, García Cacho L, Ortiz R, Vaquer R, Barberi F, Ferrara G, Albert J, Gassiot X (1983) El volcanismo Neógeno-Cuaternario de Catalunya: carácteres estructurales, petrológicos y geodinámicos. Acta Geol Hisp 18:1–17

    Google Scholar 

  • Blong RJ (1984) Volcanic hazards: a sourcebook on the effects of volcanic eruptions. Academic Press, Sidney

    Google Scholar 

  • Blong RJ (2000) Volcanic hazards and risk management. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 1215–1227

  • Bolós X, Planagumà L, Martí J (2014) Volcanic stratigraphy and evolution of the Quaternary monogenetic volcanism in the Catalan volcanic zone (NE Spain). J Quat Sci 29(6):547–560

    Article  Google Scholar 

  • Bolós X, Martí J, Becerril L, Planagumà L, Grosse P, Barde-Cabusson S (2015) Volcano-structural analysis of la Garrotxa volcanic field (NE Iberia): implications for the plumbing system. Tectonophysics 642:58–70. doi:10.1016/j.tecto.2014.12.013

    Article  Google Scholar 

  • Brand BD, Clarke AB (2009) The architecture, eruptive history, and evolution of the table rock complex, Oregon: from a Surtseyan to an energetic maar eruption. J Volcanol Geotherm Res 180:203–224

    Article  Google Scholar 

  • Brand BD, Clarke AB, Semken S (2009) Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo nation, New Mexico (USA). Bull Volcanol 71:49–77. doi:10.1007/s00445-008-0209-y

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (1992) A re-appraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520

    Article  Google Scholar 

  • Branney MJ Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London, Geol Soc Mem n 27, 143 pp

  • Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic succession modern and ancient—a geological approach to processes, products and successions. Allen & Unwin, London 487 pp

    Book  Google Scholar 

  • Cebriá JM, López-Ruiz J, Doblas M, Oyarzun R, Hertogen J, Benito R (2000) Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J Volcanol Geotherm Res 112:175–187

    Google Scholar 

  • Cimarelli C, Di Tragia F, de Rita D, Gimeno Torrente D, Fernandez Turiel JL (2013) Space–time evolution of monogenetic volcanism in the mafic Garrotxa volcanic field (NE Iberian peninsula). Bull Volcanol 75:758

    Article  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Francisco (CA), pp 331–343

    Google Scholar 

  • De Rita D, Giordano G, Esposito A, Fabbri M, Rodani S (2002) Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (middle Pleistocene, Italy). J Volcanol Geotherm Res 118:77–98

    Article  Google Scholar 

  • Druitt T (1998) Pyroclastic density currents. Geol Soc Lon Spec Public 145:145–182. doi:10.1144/GSL.SP.1996.145.01.08

    Article  Google Scholar 

  • Dufek J (2016) The fluid mechanics of pyroclastic density currents. An Rev Fluid Mech 48:459–485. doi:10.1146/annurev-fluid-122414-034252

    Article  Google Scholar 

  • Dufek J, Ongaro TE, Roche O (2015) Chapter 15: pyroclastic density currents: processes and models, in The Encyclopedia of Volcanoes. Copyright Elsevier Inc, 617–629. doi: 10.1016/B978-0-12-385938-9.00035-3

  • Fontana G, Mac Niocaill C, Brown RJ, Sparks RSJ, Field M (2011) Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Bull Volcanol 73(8):1063–1083

    Article  Google Scholar 

  • Freundt A, Schmincke HU (1995) Eruption and emplacement of a basaltic welded ignimbrite during caldera formation on Gran Canaria. Bull Volcanol 56:640–659

    Article  Google Scholar 

  • Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block and ash flow deposits. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Academic Press, San Francisco (CA), pp 581-600

  • Gernon TM, Fontana G, Field M, Sparks RSJ, Brown RJ, Mac Niocaill C (2009) Pyroclastic flow deposits from a kimberlite eruption: the Orapa south crater, Botswana. Lithos 112:566–578

    Article  Google Scholar 

  • Giordano G, De Rita D, Cas R, Rodani S (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic ‘Peperino Albano’ basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: influence of topography. J Volcanol Geotherm Res 118:131–144

    Article  Google Scholar 

  • Gisbert G, Gimeno D, Fernández-Turiel JL (2009) Eruptive mechanisms of the Puig De La Garrinada volcano (Olot, Garrotxa volcanic field, northeastern Spain): a methodological study based on proximal pyroclastic deposits. J Volcanol Geotherm Res 180:259–276

    Article  Google Scholar 

  • López Ruiz J, Rodriguez Badiola E (1985) La región volcánica Mio-Pleistocena del NE de España. Estud Geol 41:105–126

    Article  Google Scholar 

  • Lorenz W (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lowe DR (1979) Sediment gravity flows: their classification and some problems of application to natural flows and deposits. SEPM (Spec Public 27), pp 75–82

  • Lowe DR (1982) Sediment gravity flows: II depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Petrol 52:279–297

    Google Scholar 

  • Martí J, Mallarach JM (1987) Erupciones hidromagmáticas en el volcanismo cuaternario de Olot (Girona). Estud Geol 43:31–40

    Google Scholar 

  • Martí J, Diez-Gil JL, Ortiz R (1991) Conduction model for the thermal influence of lithic clasts in mixtures of hot gases and ejecta. J Geophys Res 96:1,879–21,885

    Article  Google Scholar 

  • Martí J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia trough (western Mediterranean): relation between structural evolution and volcanism. Tectonophysics 203:145–166

    Article  Google Scholar 

  • Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan volcanic zone (NE of Spain). J Volcanol Geotherm Res 201:178–193

    Article  Google Scholar 

  • Middleton GV (1993) Sediment deposition from turbidity currents. Annu Rev Earth Planet Sci 21:89–114

    Article  Google Scholar 

  • Middleton GV, Hampton MA (1973) Sediment gravity flows: mechanics of flow and deposition. In: Middleton GV, Bouma AH (eds) Turbidites and deep water sedimentation. SEPM, Anaheim Short Course Notes, 38p

    Google Scholar 

  • Miyabuchi Y, Watanabe K, Egawa Y (2006) Bomb-rich basaltic pyroclastic flow deposit from Nakadake, Aso volcano, southwestern Japan. J Volcanol Geotherm Res 155:90–103

    Article  Google Scholar 

  • Németh K, Keretzturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104:2131–2146

    Article  Google Scholar 

  • Németh K, White JDL (2003) Reconstructing eruption processes of a Miocene monogenetic volcanic Åëeld from vent remnants: Waipiata volcanic field, South Island, New Zealand. J Volcanol Geotherm Res 124:1–21

    Article  Google Scholar 

  • Neumann ER, Martí J, Mitjavila J, Wulff-Pedersen E (1999) Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the València Trough, NE Spain. Mineral Petrol 65:113–139

  • van Otterloo J, Cas RAF (2016) Low-temperature emplacement of phreatomagmatic pyroclastic flow deposits from maar craters at the monogenetic Mt Gambier volcanic complex, South Australia, and their relevance for understanding some deposits in maar diatreme fills. J Geol Soc. doi:10.1144/jgs2015-122

    Google Scholar 

  • van Otterloo J, Cas RAF, Sheard MJ (2013) Eruption processes and deposit characteristics at the monogenetic Mt. Gambier volcanic complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity. D Bull Volcanol 75:737. doi:10.1007/s00445-013-0737-y

    Article  Google Scholar 

  • Parés JM, Martí J, Garcés M (1993) Thermoremanence in red sandstone clasts and emplacement temperature of a Quaternary pyroclastic deposit (Catalan volcanic zone, NE Spain). Stud Geophys Geod, Special Issue on “New Trends in Geomagnetism” 37:401–414

    Article  Google Scholar 

  • Pedrazzi D, Bolós X, Martí J (2014) Phreatomagmatic volcanism in complex hydrogeological environments: La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, NE Spain). Geosphere. doi:10.1130/ges00959.1

  • Pedrazzi D, Bolós X, Barde-Cabusson S, Martí J (2016) Reconstructing the eruptive history of a monogenetic volcano through a combination of fieldwork and geophysical surveys: the example of Puig d’Adri (Garrotxa volcanic field). Jour Geol Soc. doi:10.1144/jgs2016-009

    Google Scholar 

  • Pittari A, Cas RAF, Monaghan J, Marti J (2007) Instantaneous dynamic pressure effects on the behaviour of lithic boulders in pyroclastic flows: the Abrigo ignimbrite, Tenerife, Canary Islands. Bull Volcanol 69:265–279

    Article  Google Scholar 

  • Roche O (2012) Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull Volcanol 74:1807–1820. doi:10.1007/s00445-012-0639-4

    Article  Google Scholar 

  • Roche O (2015) Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth Planet Sci Lett 418:115–125

    Article  Google Scholar 

  • Roche O, Buesch DC, Valentine GA (2016) Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption. Nature Commun 7:10890 doi:10.1038/ncomms10890

  • Sheridan MF, Wohletz KH (1981) Hydrovolcanic explosions: the systematics of water-pyroclast equilibrium. Science 212:1387–1389

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for transport of pyroclastic flows. Sedimentology 23:147–188

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1973) The ground surge deposit: a third type of pyroclastic rock. Nature 241:62–64

    Article  Google Scholar 

  • Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 1:115–118

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Hulme G (1978) Theoretical modeling of the generation, movement and emplacement of pyroclastic flows by column collapse. J Geophys Res 83:1727–1739

    Article  Google Scholar 

  • Sulpizio R, Dellino P (2008) Chapter 2 sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents. In: Gottsmann JH, Martí J (eds) Developments in volcanology, caldera volcanism: analysis, modelling and response, vol 10, pp 57–96

    Chapter  Google Scholar 

  • Tilling RI (1989) Volcanic hazards and their mitigation: progress and problems. Rev Geophys 27:237–269

    Article  Google Scholar 

  • Tilling RI (2005) Volcano hazards, in Martí J and Ernst G (Edts): volcanoes and the environment. Cambridge University Press, Cambridge, pp 55–89

    Google Scholar 

  • Valentine GA, Fisher RV (1986) Origin of layer 1 deposits in ignimbrites. Geology 14:146–148

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanism—process and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989) Environmental hazards of pyroclastic flows determined by numerical models. Geology 17:641–644

    Article  Google Scholar 

  • Valentine GA, Perry FV, Wolde Gabriel G (2000) Field characteristics of deposits from spatter-rich pyroclastic density currents at summer coon volcano, Colorado. J Volcanol Geotherm Res 104:187–199

    Article  Google Scholar 

  • Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Academic Press, San Francisco (CA), pp 283–289

  • White JDL (1991) Maar–diatreme phreatomagmatism at Hopi buttes, Navajo nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94:283–304

    Article  Google Scholar 

  • Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc Lon 139:581–592

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions-IV: the control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astron Soc 63:117–148

    Article  Google Scholar 

  • Wohletz KM, Sheridan MF (1983) Hydrovolcanic explosions 2. Evolution of basaltic tuff rings and tuffs cones. Amer Jour Sci 283:385–413

Download references

Acknowledgments

JM is grateful for the MECD (PRX16/00056) grant. AG is grateful for her Ramón y Cajal contract (RYC-2012-11024). We thank the Associated Editor Richard Brown and the referees Ray Cas and Pablo Davila-Harris for their thorough and constructive reviews. English text has been corrected by Michael Lockwood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martí.

Additional information

Editorial responsibility: R.J. Brown

Appendix 1

Appendix 1

Approximate minimum flow velocities have been calculated using the approaches proposed by Pittari et al. (2007) and Roche (2015), both aimed at calculating the minimum flow velocity required by the parent flow to move lithic clasts captured from an underlaying substrate to a certain distance. Following Pittari et al. (2007), if we assume that the force required to move a static clast of certain dimension and density resting on bedrock is

$$ F1={u}_s m g $$
(1)

and that the force applied to a clast at rest by a pyroclastic flow is

$$ F2=0.5{\rho}_{fl}{\nu}^2{C}_D A $$
(2)

where u s is the coefficient of static friction, m is the clast mass, g is the acceleration due to gravity, ρ fl is the bulk density of the pyroclastic flow, ν is the pyroclastic flow velocity, C D is the coefficient of aerodynamic drag and A is the clast surface impacted by the flow force, and making F1 = F2, we have that

$$ {\nu}^2={u}_s m g/0.5{\rho}_{fl}{C}_D A $$
(3)

Considering a lithic clast size dimensions of 0.8 × 0.5 × 0.3 (volume = 0.12 m3), which corresponds to the maximum lithic clast (Eocene feldspathic sandstone) size we have recorded, and the following input values: u s  = 0.7; A = 0.15 m2; m = 300 kg (clast density = 2500 kg/m3); g = 10 ms−2; ρ fl  = 1800 kg/m3; C D  = 0.8, we obtain v = 4.41 m/s (15.87 km/h). If we used the equation proposed by Roche (2015)

$$ {v}^2=\left({\rho}_p-{\rho}_f\right) g C\div \gamma \rho $$
(4)

where ξ is a shape factor equal to 2.3 for an ellipsoid, ρ p is the clast density, ρ f is the gas density (∼1 kg/m3), g is the acceleration of gravity, C is the short length of the clast, γ ≈ 0.06 is an empirical factor and ρ is the bulk flow density, and using the same input values that in the previous case, we obtain a minimum flow velocity of 7 m/s, equivalent to 24 km/h.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martí, J., Planagumà, L.l., Geyer, A. et al. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field. Bull Volcanol 79, 33 (2017). https://doi.org/10.1007/s00445-017-1113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1113-0

Keywords

Navigation