Skip to main content

Advertisement

Log in

Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The siliceous sponge Monorhaphis chuni (Hexactinellida) synthesizes the largest biosilica structures on earth (3 m). Scanning electron microscopy has shown that these spicules are regularly composed of concentrically arranged lamellae (width: 3–10 μm). Between 400 and 600 lamellae have been counted in one giant basal spicule. An axial canal (diameter: ~2 μm) is located in the center of the spicules; it harbors the axial filament and is surrounded by an axial cylinder (100–150 μm) of electron-dense homogeneous silica. During dissolution of the spicules with hydrofluoric acid, the axial filament is first released followed by the release of a proteinaceous tubule. Two major proteins (150 kDa and 35 kDa) have been visualized, together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan collagen gene has been demonstrated by cloning it from Aphrocallistes vastus. During the axial growth of the spicules, silicatein or the silicatein-related protein is proposed to become associated with the surface of the spicules and to be finally internalized through the apical opening to associate with the axial filament. Based on the data gathered here, we suggest that, in the Hexactinellida, the growth of the spicules is mediated by silicatein or by a silicatein-related protein, with the orientation of biosilica deposition being controlled by lectin and collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzel P (2005) Skeleton of Euplectella sp.: structural hierarchy from nanoscale to the macroscale. Science 309:275–278

    Article  PubMed  CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  PubMed  CAS  Google Scholar 

  • Chun C (1900) Aus den Tiefen des Weltmeeres. Fischer, Jena

    Google Scholar 

  • Coligan JE, Dunn BM, Speicher DW, Wingfield PT (1998) Current protocols in protein science. Wiley, New York, pp 10.4.1–10.4.36

    Google Scholar 

  • Compton S, Jones C (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151:369–374

    Article  Google Scholar 

  • Corsetti FA, Olcott AN, Bakermans C (2006) The biotic response to the Neoproterozoic snowball Earth. Palaeogeogr Palaeoclimatol Palaeoecol 232:114–130

    Article  Google Scholar 

  • Croce G, Frache A, Milanesio M, Marchese L, Causa M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in protein. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Eckert C, Schröder HC, Brandt D, Perovic-Ottstadt S, Müller WEG (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich H, Hanke T, Simon P, Goebel C, Heinmann S, Born R, Worch H (2005) Demineralisation von natürlichen Silikat-basierten Biomaterialien: neue Strategie zur Isolation organischer Gerüststrukturen. Biomaterialien 6:297–302

    Google Scholar 

  • Felsenstein J (1993) PHYLIP, ver. 3.5. University of Washington, Seattle

  • Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP, Boot-Handford RP (2000) Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 275:39589–39599

    Article  PubMed  CAS  Google Scholar 

  • Garrone R (1984) Formation and involvement of extracellular matrix in the development of sponges, a primitive multicellular system. In: Trelstad RL (ed) The role of extracellular matrix in development. Liss, New York, pp 461–477

    Google Scholar 

  • Garrone R (1998) Evolution of metazoan collagens. Prog Mol Subcell Biol 21:139–191

    Google Scholar 

  • Gundacker D, Leys SP, Schröder HC, Müller IM, Müller WEG (2001) Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor. Glycobiology 11:21–29

    Article  PubMed  CAS  Google Scholar 

  • Holmes RE, Hagler HK, Coletta CA (1987) Thick-section histometry of porous hydroxyapatite implants using backscattered electron imaging. J Biomed Mat Res 21:731–738

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Jaffe CL, Dwyer DM (2003) Extracellular release of the surface metalloprotease, gp63, from Leishmania and insect trypanosomatids. Parasitol Res 91:229–237

    Article  PubMed  Google Scholar 

  • Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen deterction in tissue sections. Histochem J 11:447–455

    Article  PubMed  CAS  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005a) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. I. Biological and biochemical studies. Naturwissenschaften 92:128–133

    Article  PubMed  CAS  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005b) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. II. Molecular biological studies. Naturwissenschaften 92:134–138

    Article  PubMed  CAS  Google Scholar 

  • Kennish MJ (1994) Practical handbook of marine science. CRC Press, Boca Raton

    Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Kruse M, Müller IM, Müller WEG (1997) Early evolution of metazoan serine/threonine- and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 14:1326–1334

    PubMed  CAS  Google Scholar 

  • Levi C, Barton JL, Guillemet C, Le Bras E, Lehuede P (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett 8:337–339

    Article  CAS  Google Scholar 

  • Li J (1987) Monorhaphis intermedia—a new species of Hexactinellida. Oceanol Limnol Sinica 18:135–137

    Google Scholar 

  • Maldonado M, Carmona NC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–788

    Article  CAS  Google Scholar 

  • Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309

    Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Wiens M, Müller IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein—collagen—myotrophin. Prog Mol Subcell Biol 33:195–221

    PubMed  Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The Bauplan of the Urmetazoa: the basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92

    PubMed  Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    Article  PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Version 1.1.004 (distributed by the author; cris.com/~ketchup/genedoc.shtml)

  • Perry CC (2003) Silicification: the process by which organisms capture and mineralize silica. Rev Mineral Geochem 54:291–327

    Article  CAS  Google Scholar 

  • Pilcher H (2005) Back to our roots. Nature 435:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Rao J, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochem Biophys Acta 869:197–214

    CAS  Google Scholar 

  • Reiswig HM (2006) Classification and phylogeny of Hexactinellida (Porifera). Can J Zool 84:195–204

    Article  Google Scholar 

  • Reitner J, Wörheide G (2002) Non-lithistid Demospongiae aps—origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Van Soest RWM (eds) Systema porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York, pp 52–70

    Google Scholar 

  • Roux M, Bouchet P, Bourseau JP, Gaillard C, Grandperrin R, Guille A, Laurin B, Monniot C, Richer de Forges B, Rio M, Segonzac M, Vacelet J, Zibrowius H (1991) L’environment bathyal au large de la Nouvelle-Calédonie: résultats preliminaries de la campagne CALSUB et consequences paléoécologiques. Bull Soc Geol France 162:675–685

    Google Scholar 

  • Sandford F (2003) Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (Demospongiae and Hexactinellida). Microsc Res Tech 62:336–355

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WJ (1926) Über das Wesen der Lamellierung und das gegenseitige Verhalten von organischer und anorganischer Substanz bei den Kieselschwammnadeln. Zool Jahrb (Abt Morphol) 48:311–364

    Google Scholar 

  • Schmidt WJ (1928) Die Pfahlnadel von Monorhaphis chuni F.E. Schulze. Mikrokosmos 21:113–120

    Google Scholar 

  • Schrammen A (1924) Die Kieselspongien der oberen Kreide von Nordwestdeutschland. Monogr Geol Paleontol 2:1–159

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WE (2004a) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    Article  PubMed  Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004b) Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell Tissue Res 316:271–280

    Article  PubMed  CAS  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009

    Article  CAS  Google Scholar 

  • Schulze FE (1904) Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee–Expedition auf dem Dampfer “Valdivia” 1898–1899. Fischer, Stuttgart

    Google Scholar 

  • Schulze P (1925) Zum morphologischen Feinbau der Kiesel schwammnadeln. Z Morphol Ökol Tiere 4:615–625

    Article  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Kröner A, Hauzenberger C, Muhongo S, Wingate MTD (2003) Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania: crustal recycling of Archean and Palaeoproterozoic material during the Pan-African orogeny. J Metamorphic Geol 21:915–934

    Article  CAS  Google Scholar 

  • Sullivan CW (1986) Silicification in diatoms. In: Evered D, O’Connor M (eds) Silicon biochemistry. Wiley, Chichester, pp 59–89

    Google Scholar 

  • Tabachnick KR (2002) Family Monorhaphididae Ijima, 1927. In: Hooper JNA, Van Soest RWM (eds) Systema porifera. Kluwer Academic, New York, pp 1264–1266

    Google Scholar 

  • Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85:868–872

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Uriz MJ (2006) Mineral spiculogenesis in sponges. Can J Zool 84:322–356

    Article  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, biological functions. Microsc Res Tech 62:279–299

    Article  PubMed  CAS  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of the earths surface temperature. J Geophys Res 86:9776–9782

    Article  CAS  Google Scholar 

  • Wang X, Wang Y (2006) An introduction to the study on natural characteristics of sponge spicules and bionic applications. Adv Earth Sci 21:37–42

    Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Ms. E. Sehn (Zoological Institute, University of Mainz, Germany) for valuable technical assistance. Material was provided by Dr. D. Bernhard (Zoological Institute, University of Leipzig, Germany), Dr. C. Lüter (Museum für Naturkunde, Berlin, Germany), Prof. Dr. R. Kinzelbach (Zoological Institute, University of Rostock, Germany), and Dr. K. Tabachnick (Institute of Oceanology, Moscow, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller.

Additional information

Carsten Eckert was previously with the Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany.

The collagen sequence from Aphrocallistes vastus reported here, viz., [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base.

This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), the National Natural Science Foundation of China (grant no. 50402023), and the International Human Frontier Science Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W.E.G., Eckert, C., Kropf, K. et al. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res 329, 363–378 (2007). https://doi.org/10.1007/s00441-007-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0402-x

Keywords

Navigation