Skip to main content
Log in

PhiC31 integrase-mediated cassette exchange in silkworm embryos

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To construct an effective site-specific integration system in the silkworm, we examined if phiC31 integrase works in silkworm embryos. As an assay system, we constructed an extrachromosomal cassette exchange reaction system between two attP sites of an acceptor plasmid and two attB sites of a donor plasmid. To evaluate the activity, integrase mRNAs synthesized from three different plasmids were used. We injected a mixture of the acceptor and donor plasmids with the mRNA synthesized in vitro from one of the three plasmids into silkworm embryos at 4–6 h after oviposition and recovered plasmid DNAs from the embryos 3 days after injection. The resultant plasmids were transformed into Escherichia coli and spread on selection medium plates containing the appropriate antibiotics. A colony-forming assay and restriction enzyme digestion of the plasmids purified from the colonies showed that the phiC31 integrase worked very efficiently in the silkworm embryos. Notably, a phiC31 integrase mRNA synthesized from two of the plasmids produced cassette exchange plasmids at a high frequency, suggesting that the mRNA can be used to construct a targeted integration system in silkworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bateman JR, Lee AM, Wu CT (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173:769–777

    Article  PubMed  CAS  Google Scholar 

  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104:3312–3317

    Article  PubMed  CAS  Google Scholar 

  • Fish MP, Groth AC, Calos MP, Nusse R (2007) Creating transgenic Drosophila by microinjecting the site-specific phiC31 integrase mRNA, a transgene-containing donor plasmid. Nat Protoc 2:2325–2331

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Handler AM (2005) Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci USA 102:12483–12488

    Article  PubMed  CAS  Google Scholar 

  • Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 165:1329–1340

    PubMed  CAS  Google Scholar 

  • Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35:51–59

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Tanaka N, Murakami K, Uchiyama T, Kumaki S, Tsuchiya S, Kugoh H, Oshimura M, Calos MP, Sugamura K (2006) Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J Gene Med 8:646–653

    Article  PubMed  CAS  Google Scholar 

  • Labbe GM, Nimmo DD, Alphey L (2011) piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLoS Negl Trop Dis 4:e788

    Article  Google Scholar 

  • Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL, Underhill A, McArthur CC, Carter V, Hurd H, Bourgouin C, Eggleston P (2011) Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One 6:e14587

    Article  PubMed  CAS  Google Scholar 

  • Nakayama G, Kawaguchi Y, Koga K, Kusakabe T (2006) Site-specific gene integration in cultured silkworm cells mediated by phiC31 integrase. Mol Genet Genomics 275:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nimmo DD, Alphey L, Meredith JM, Eggleston P (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15:129–136

    Article  PubMed  CAS  Google Scholar 

  • Quan GX, Kobayashi I, Kojima K, Uchino K, Kanda T, Sezutsu H, Shimada T, Tamura T (2007) Rescue of white egg 1 mutant by introduction of the wild-type Bombyx kynurenine 3-monooxygenase gene. Insect Sci 14:85–92

    Article  CAS  Google Scholar 

  • Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, Uchino K, Banno Y, Iwano H, Maekawa H, Tamura T, Kataoka H, Tsuchida K (2007) Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Proc Natl Acad Sci USA 104:8941–8946

    Article  PubMed  CAS  Google Scholar 

  • Schetelig MF, Scolari F, Handler AM, Kittelmann S, Gasperi G, Wimmer EA (2009) Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata. Proc Natl Acad Sci USA 106:18171–18176

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Kamba M, Sonobe H, Kanda T, Klinakis AG, Savakis C, Tamura T (2000) Extrachromosomal transposition of the transposable element Minos occurs in embryos of the silkworm Bombyx mori. Insect Mol Biol 9:277–281

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Kuwabara K, Uchino K, Kobayashi I, Kanda T (2007) An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms. J Insect Biotechnol Sericol 76:155–159

    CAS  Google Scholar 

  • Tan A, Tanaka H, Tamura T, Shiotsuki T (2005) Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA 102:11751–11756

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Kanda T, Imanishi S, Tamura T (1999) Yeast FLP recombinase-mediated excision in cultured cells and embryos of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 34:371–377

    Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465

    Article  PubMed  CAS  Google Scholar 

  • Uchino K, Imamura M, Sezutsu H, Kobayashi I, Kojima K, Kanda T, Tamura T (2006) Evaluating promoter sequences for trapping an enhancer activity in the silkworm Bombyx mori. J Insect Biotechnol Sericol 75:89–97

    CAS  Google Scholar 

  • Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics 277:213–220

    Article  PubMed  CAS  Google Scholar 

  • Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Mita K, Tamura T (2008) Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Venken KJ, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Kaoru Nakamura and Mr. Koji Hashimoto for rearing the silkworms. This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tamura.

Additional information

Communicated by T. Clandinin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonemura, N., Tamura, T., Uchino, K. et al. PhiC31 integrase-mediated cassette exchange in silkworm embryos. Mol Genet Genomics 287, 731–739 (2012). https://doi.org/10.1007/s00438-012-0711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-012-0711-y

Keywords

Navigation