Skip to main content

Advertisement

Log in

Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Given the widespread distribution and medical implication of members of the genus Hymenolepis, specific identification of the aetiological agent becomes imperative. For precise diagnosis of the species, molecular techniques such as PCR and RFLP of the nuclear ribosomal internal transcribed spacer 2 (rDNA-ITS2) gene marker were carried out. The results showed distinct restriction patterns for both Hymenolepis nana and Hymenolepis diminuta when digested with either of the enzymes RsaI, HaeIII or HhaI. The annotated rDNA-ITS2 sequences from the two species revealed differences in the length; the folded secondary structure also depicted clear demarcation between the two species with variations in length of the helices, pyrimidine-pyrimidine mismatches and sites where motifs occur. In phylogenetic analysis of the evolutionary relationship between the two species as well as with other members of the family Hymenolepididae, the species causing human hymenolepiasis were found to be distantly related as they diverged independently from the ancestral lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bowles J, McManus DP (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol Biochem Parasitol 57:231–239

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Blair D, McManus DP (1994) Molecular genetic characterization of the cervid strain ‘northern form’ of Echinococcus granulosus. Parasitology 109:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Blair D, McManus DP (1995) A molecular phylogeny of the human schistosomes. Mol Phylogenet Evol 4:103–109

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Liu GH, Song HQ, Lin RQ, Zhu XQ (2016) The complete mitochondrial genome of the dwarf tapeworm Hymenolepis nana—a neglected zoonotic helminth. Parasitol Res 115:1253–1262

    Article  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryotic evolutionary comparisons. Trends Genet 19:370–375

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig P, Ito A (2007) Intestinal cestodes. Curr Opin Infect Dis 20:524–532

    Article  PubMed  Google Scholar 

  • Czaplinski B, Vaucher C (1994) Family hymenolepididae ariola, 1899. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 595–663

    Google Scholar 

  • Eddy S (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Elminti De CF (2004) Classe Cestoda. Ordine Cyclophillidea. Famiglia Hymenolepididae. Parassitologia generale e umana, 13th edn. Casa Editrice Ambrosiana, Milano, pp 307–309

    Google Scholar 

  • Francisco CJ, Almeida A, Castro AM, Santos MJ (2010) Development of a PCR RFLP marker to genetically distinguish Prosorhynchus crucibulum and Prosorhynchus aculeatus. Parasitol Int 59:40–43

    Article  CAS  PubMed  Google Scholar 

  • Garcia LS (2006) Intestinal cestodes diagnostic medical parasitology, 5th edn. ASM press, Washington DC, pp 357–380

    Google Scholar 

  • Ghatani S, Shylla JA, Tandon V, Chatterjee A, Roy B (2012) Molecular characterization of pouched amphistome parasites Trematoda Gastrothylacidae using ribosomal ITS2 sequence and secondary structures. J Helminthol 86:117–124

    Article  CAS  PubMed  Google Scholar 

  • Ghatani S, Shylla JA, Roy B, Tandon V (2014) Multilocus sequence evaluation for differentiating species of the trematode family Gastrothylacidae with a note on the utility of mitochondrial COI motifs in species identification. Gene 548:277–284

    Article  CAS  PubMed  Google Scholar 

  • Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA web suite. Nucleic Acids Res 36:W70–W74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick HJ, Bowdre JH, Church SM (1990) Rat tapeworm Hymenolepis diminuta infection in a child. Pediatr Infect Dis J 9:216–219

    Article  CAS  PubMed  Google Scholar 

  • Haukisalmi V, Hardman LM, Foronda P, Feliu C, Laakkonen J, Niemimaa J, Lehtonen JT, Henttonen H (2010) Systematic relationships of hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zool Scr 39:631–641.

    Article  Google Scholar 

  • Hershkovitz M, Lewis L (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13:1276–1295

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Itagaki T (2010) Discrimination of the ITS1 types of Fasciola spp. based on a PCR-RFLP method. Parasitol Res 106:757–761

    Article  PubMed  Google Scholar 

  • Levi MH, Raucher BG, Teicher E, Sheehan DJ, Mckitrick JC (1987) Hymenolepis diminuta one of three enteric pathogens isolated from a child. Diagn Microbiol Infect Dis 7:255–259

    Article  CAS  PubMed  Google Scholar 

  • Mahami-Oskouei M, Dalimi A, Forouzandeh-Moghadam M, Rokni M (2011) Molecular identification and differentiation of Fasciola isolates using PCR-RFLP method based on internal transcribed spacer ITS1 58S rDNA ITS2. Iran J Parasitol 6:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marangi M, Zechini B, Fileti A, Quaranta G, Aceti A (2003) Hymenolepis diminuta infection in a child living in the urban area of Rome, Italy. J Clin Microbiol 41:3994–3995

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayta H, Talley A, Gilman RH, Jimenez J, Verastegui M, Ruiz M, Garcia HH, Gonzalez AE (2000) Differentiating Taenia solium and Taenia saginata infections by simple hematoxylin-eosin staining and PCR-restriction enzyme analysis. J Clin Microbiol 38:133–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merwad AMA, Mitchell SM, Zajac AM, Flick GJ, Lindsay DS (2011) Effects of high pressure processing on hatching of eggs of the zoonotic rat tapeworm Hymenolepis diminuta. Vet Parasitol 176:185–188

    Article  CAS  PubMed  Google Scholar 

  • Mowlavi GH, Mobedi I, Mamishi S, Rezaeian M, Haghi-Ashtiani MT, Kashi M (2008) Hymenolepis diminuta Rodolphi 1819 infection in a child from Iran. Iran J Public Health 37:120–122

    Google Scholar 

  • Naquira C, Delgado E, Tantalean Naquira F, Elliot A (1973) Prevalencia de enteroparasitos en escolares de los distritos de San Juan y Magdalena. Rev Peru Med Trop 2:37–40

    Google Scholar 

  • Nkouawa A, Haukisalmi V, Li T, Nakao M, Lavikainen A, Chen X, Henttonen H, Ito A (2016) Cryptic diversity in hymenolepidid tapeworms infecting humans. Parasitol Int 65:83–86

    Article  PubMed  Google Scholar 

  • Palmeirim M, Bordes F, Chaisiri K, Siribat P, Ribas A, Morand S (2014) Helminth parasite species richness in rodents form Southeast Asia role of host species and habitat. Parasitol Res 113:3713–3726

    Article  PubMed  Google Scholar 

  • Panpiglione S, Visconti S, Pezzino G (1987) Human intestinal parasites in Sub Saharan Africa II Sao Tome and Principe. Parasitologia 29:15–25

    Google Scholar 

  • Patamia I, Cappello E, Castellano-Chiodo D, Greco F, Nigro L, Cacopardo B (2010) A human case of Hymenolepis diminuta in a child from eastern Sicily. Korean J Parasitol 48:167–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Rokni MB, Mirhendi H, Mizani A, Mohebali M, Sharbatkhori M, Kia EB, Abdoli H, Izadi S (2010) Identification and differentiation of Fasciola hepatica and Fasciola gigantica using a simple PCR-restriction enzyme method. Exp Parasitol 124:209–213

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2. Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahu R, Biswal DK, Roy B, Tandon V (2015) Molecular characterization of Opisthorchis noverca Digenea Opisthorchiidae based on nuclear ribosomal ITS2 and mitochondrial COI genes. J Helminthol. DOI. 10.1017/S0022149X15000851

  • Sambrook J, Russell DW (2001) Preparation and analysis of eukaryotic genomic DNA in molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 1.51–1.54

    Google Scholar 

  • Schantz PM (1996) Tapeworms Cestodiasis. Gastroenterol Clin N Am 25:637–653

    Article  CAS  Google Scholar 

  • Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 ITS2 throughout the Eukaryota. RNA 11:361–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Lyngdoh D, Roy B, Tandon V (2016) Molecular phylogeny of Cyclophyllidea Cestoda Eucestoda an in-silico analysis based on mtCOI gene. Parasitol Res. DOI. 10.1007/s00436-016-5092-4

  • Shylla JA, Ghatani S, Chatterjee A, Tandon V (2011) Secondary structure analysis of ITS2 in the rDNA of three Indian paramphistomid species found in local livestock. Parasitol Res 108:1027–1032

    Article  PubMed  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI, a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Sirivichayakul C, Radomyos P, Praevanit R, Pojjaroen-Anant C, Wisetsing P (2000) Hymenolepis nana infection in Thai children. J Med Assoc Thai 83:1035–1038

    CAS  PubMed  Google Scholar 

  • Skerikova A, Brabec J, Kuchta R, Jimenez JA, Garcia HH, Scholz T (2006) Is the human-infecting, Diphyllobothrium pacificum, a valid species or just a South American population of the holarctic fish broad tapeworm D. latum? Am J Trop Med Hyg 75:307–310

    PubMed  Google Scholar 

  • Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6 molecular evolutionary genetics analysis version 60. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena D, Perez Simon M, Gimeno M, Perez Pomata MT, Illescas S, Amondarain I, Gonzalez A, Dominguez J, Bisquert J (1998) Human infection with Hymenolepis diminuta case report from Spain. J Clin Microbiol 36:2375–2376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teodoro TM, Jannotti-Passos LK, Carvalho-Odos S, Grijalva MJ, Baús EG, Caldeira RL (2011) Hybridism between Biomphalaria cousini and Biomphalaria amazonica and its susceptibility to Schistosoma mansoni. Mem Inst Oswaldo Cruz 106:851–855

    Article  PubMed  Google Scholar 

  • Thompson RC (2015) Neglected zoonotic helminthes Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum. Clin Microbol Infect 21(5):426–432

  • Tiwari S, Karuna T, Rautaraya B (2014) Hymenolepis diminuta infection in a child from a rural area a rare case report. J Lab Physicians 6:58–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Watwe S, Dardi CK (2008) Hymenolepis diminuta in a child from rural area Indian. J Pathol Microbiol 51:149–151

    Article  Google Scholar 

  • Wiwanitkit V (2004) Overview of Hymenolepis diminuta infection among Thai patients. Med Gen Med 6:7

  • Yamasaki H, Nakaya K, Minoru N, Sako Y, Ito A (2007) Significance of molecular diagnosis using histopathological specimens in cestode zoonoses. Trop Med Health 354:307–321

    Article  Google Scholar 

  • Zarlenga DS (1991) The differentiation of a newly described Asian taenia from Taenia saginata using enzymatically amplified non-transcribed ribosomal DNA repeat sequences. Southeast Asian J Trop Med Public Health 22(Suppl):251–255

    PubMed  Google Scholar 

  • Zhang W, Yuan Y, Yang S, Huang J, Huang L (2015) ITS2 Secondary structure improves discrimination between medicinal “mu tong” species when using DNA barcoding. PLOS ONE 107:e0131185.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Indian Council of Medical Research (ICMR)-sponsored project ‘Molecular characterization of food-borne trematodes and cestodes prevailing in Northeast India’, sanctioned to V.T. and B.R. et al. The authors thankfully acknowledge the Departmental Special Assistance (DSA)-University Grants Commission-Special Assistance Programme (UGC-SAP) for infrastructural support to the Department of Zoology, NEHU, Shillong. We thank the Bioinformatics Centre (BIC), NEHU for allowing access to its facility and UGC for financial support as fellowship to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Tandon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Lyngdoh, D., Roy, B. et al. Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol Res 115, 4293–4298 (2016). https://doi.org/10.1007/s00436-016-5210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5210-3

Keywords

Navigation