Skip to main content

Advertisement

Log in

Testosterone persistently dysregulates hepatic expression of Tlr6 and Tlr8 induced by Plasmodium chabaudi malaria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Testosterone (T) is known to induce persistent susceptibility to Plasmodium chabaudi malaria. Pathogens recognizing Toll-like receptors (TLRs), though potentially important against malaria, have not yet been examined for their T-sensitivity. Here, we investigate effects of T and P. chabaudi on mRNA expression and promoter DNA methylation of Tlr1–9 genes in the liver of female C57BL/6 mice. These are treated with T or vehicle for 3 weeks, and then treatment is discontinued for 12 weeks, before challenging with P. chabaudi for 8 days. Our data reveal that T induces a 9.1-fold downregulation of Tlr6 mRNA and 6.3-fold upregulation of Tlr8 mRNA. Blood-stage infections induce significant increases in mRNA expression of Tlr1, 2, 4, 6, 7, and 8 varying between 2.5-fold and 21-fold in control mice. In T-pretreated mice, these Tlr genes are also significantly responsive to infections. However, the malaria-induced upregulations of the relative mRNA expressions of Tlr6 and Tlr8 are 5.6-fold higher and 6.5-fold lower in T-pretreated mice than in control mice. Infections induce a massive DNA down-methylation of the Tlr6 gene promoter in control mice, which is still more pronounced in T-pretreated mice, while significant changes are not detectable for the DNA methylation status of the Tlr8 promoter. Our data support the view that hepatic expression of Tlr6, but not that of Tlr8 is epigenetically controlled, and that the dysregulations of Tlr6 and Tlr8 critically contribute to T-induced persistent susceptibility to P. chabaudi malaria, possibly by dys-balancing responses of TLR6-mediated pathogen recognition and TLR8-mediated generation of anti-malaria “protective” autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo T, Sekikawa H (2002) Extrathymic T cells in malaria protection, including evidence for the onset of erythropoiesis in the liver during infection. Arch Histol Cytol 65(2):127–132

    Article  PubMed  Google Scholar 

  • Al-Quraishy S, Dkhil MA, Abdel-Baki AA, Delic D, Santourlidis S, Wunderlich F (2013) Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice. Parasitol Res 112(11):3757–70

    Article  PubMed  Google Scholar 

  • Bellows CF, Molina RM, Brain JD (2011) Diminished organelle motion in murine Kupffer cells during the erythrocytic stage of malaria. J R Soc Interface 8:711–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Benten WP, Ulrich P, Kühn-Velten WN, Vohr HW, Wunderlich F (1997) Testosterone-induced susceptibility to Plasmodium chabaudi malaria: persistence after withdrawal of testosterone. J Endocrinol 153:275–281

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar H, Kala S, Sharma L, Jain S, Kim KS, Pal R (2011) Serum and organ-associated anti-hemoglobin humoral autoreactivity: association with anti-Sm responses and inflammation. Eur J Immunol 41:537–548

    Article  PubMed  CAS  Google Scholar 

  • Brahimi K, Martins YC, Zanini GM, Ferreira-da-Cruz MF, Daniel-Ribeiro CT (2011) Monoclonal auto-antibodies and sera of autoimmune patients react with Plasmodium falciparum and inhibit its in vitro growth. Mem Inst Oswaldo Cruz 106:44–51

    Article  PubMed  Google Scholar 

  • Broering R, Lu M, Schlaak JF (2011) Role of Toll-like receptors in liver health and disease. Clin Sci 121:415–426

    Article  PubMed  CAS  Google Scholar 

  • Butcher G (2008) Autoimmunity and malaria. Trends Parasitol 24:291–2

    Article  PubMed  Google Scholar 

  • Cervantes JL, Weinermann B, Basole C, Salazar JC (2012) TLR: the forgotten relative revindicated. Cell Mol Immunol 9:432–438

    Article  Google Scholar 

  • Chen Y, Sun R (2011) Toll-like receptors in acute liver injury and regeneration. Int Immunopharmacol 11(10):1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–63

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Ribeiro CT (2000) Is there a role for autoimmunity in immune protection against malaria? Mem Inst Oswaldo Cruz 95:199–207

    Article  PubMed  CAS  Google Scholar 

  • DeAlmeida LA, Macedo GC, Marinho FA, Gomes MT, Corsetti PP, Silva AM, Cassataro J, Giambartolomei GH, Oliveira SC (2013) Toll-like receptor 6 plas an important role in host innate resistance to Brucella abortus infection in mice. Infect Immun 81:1654–1662

    Article  CAS  Google Scholar 

  • Delić D, Gailus N, Vohr HW, Dkhil M, Al-Quraishy S, Wunderlich F (2010a) Testosterone induced permanent changes of hepatic gene expression sustained during Plasmodium chabaudi malaria. J Mol Endocrinol 45:379–390

    Article  PubMed  Google Scholar 

  • Delić D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F (2010b) Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids 75:998–1004

    Article  PubMed  Google Scholar 

  • Delic D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S, Häussinger D, Wunderlich F (2010c) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ, Valenzuela DM, Yancopoulos GD, Flavell RA, Alexopoulou L (2010) TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 120:3651–3662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dockrell HM, DeSouza JB, Playfair JHL (1980) The role of the liver in immunity to blood-stage murine malaria. Immunology 41:421–429

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fontaine A, Bourdon S, Belghazi M, Pophillat M, Fourquet P, Granjeaud S, Torrentino-Madamet M, Rogier C, Fusai T, Almeras L (2012) Plasmodium falciparum infection-induced changes in erythrocyte proteins. Parasitol Res 110(2):545–556

    Article  PubMed  Google Scholar 

  • Frevert U, Nardin E (2008) Cellular effector mechanisms against Plasmodium liver stages. Cell Microbiol 10(10):1956–1967

    Article  PubMed  CAS  Google Scholar 

  • Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiébaut R, Tibshirani RJ, Davis MM (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A 111:869–874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harder A, Danneschewski A, Wunderlich F (1994) Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitol Res 80:446–448

    Article  PubMed  CAS  Google Scholar 

  • Hughes VL, Randolph SE (2001) Testosterone increases the transmission potential of tick-born parasites. Parasitology 123:365–371

    Article  PubMed  CAS  Google Scholar 

  • Jarra W (1980) Protective immunity to malaria and anti-erythrocyte autoimmunity. Ciba Found Symp 94:137–158

    Google Scholar 

  • Jayawardena AN, Janeway CA Jr, Kemp JD (1979) Experimental malaria in the CBA/N mouse. J Immunol 123:2532–2539

    PubMed  CAS  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 29:484–492

    Article  Google Scholar 

  • Kamis AB, Ibrahim JB (1989) Effects of testoterone on blood leukocytes in Plasmodium berghei-infected mice. Parasitol Res 75:611–613

    Article  PubMed  CAS  Google Scholar 

  • Kamis AB, Ahmad RA, Badrul-Munir MZ (1992) Worm burden and leukacyte response in Angiostrongylus malayensis-infected rats: the influence of testosterone. Parasitol Res 78:388–391

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  • Kesar V, Odin JA (2014) Toll-like receptors and liver disease. Liver Int 34:184–196

    Article  PubMed  CAS  Google Scholar 

  • Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infections. Parasite Immunol 26:247–264

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Vollmer J (2007) Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 220:251–269

    Article  PubMed  CAS  Google Scholar 

  • Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC (2005) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280:8606–8616

    Article  PubMed  CAS  Google Scholar 

  • Kruecken J, Dkhil MA, Braun JV, Schroetel RMU, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F (2005) Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun 73:436–443

    Article  CAS  Google Scholar 

  • Kruecken J, Delic D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F (2009) Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 8:54–64

    Article  Google Scholar 

  • Litvak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DeltaDeltaC(T) method. Methods 25:402–408

    Article  Google Scholar 

  • Lotter H, Helk E, Bernin H, Jacobs T, Prehn C, Adamski J, González-Roldán N, Holst O, Tannich E (2013) Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNgamma secretion in natural killer cells. PLoS One 8(2):e55694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mackinnon MJ, Read AF (2003) The effects of host immunity on virulence- transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology 126:103–112

    Article  PubMed  CAS  Google Scholar 

  • Mannoor MK, Halder RC, Morshed SR, Ariyasinghe A, Bakir HY, Kawamura H, Watanabe H, Sekikawa H, Abo T (2002) Essential role of extrathymic T cells in protection against malaria. J Immunol 169(1):301–306

    Article  PubMed  CAS  Google Scholar 

  • Marriott I, Huet-Hudson YM (2006) Sexual dimorphism in innate immune responses to infectious organisms. Immunol Res 34:177–192

    Article  PubMed  CAS  Google Scholar 

  • Mastelic B, do Rosario AP, Veldhoen M, Renauld JC, Jarra W, Sponaas AM, Roetynck S, Stockinger B, Langhorne J (2012) IL-22 protects against liver pathology and lethality of an experimental blood-stage malaria infection. Front Immunol 3:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Misch EA, Verbon A, Prins JM, Skerret SJ, Hawn TR (2013) A TLR6 polymorphism is associated with increased risk of Legionnaires’ disease. Genes Immunol 14:420–426

    Article  CAS  Google Scholar 

  • Mueller HE (1992) The more effective immune system of women against infectious agents. Wien Med Wochenschr 142:389–395

    Google Scholar 

  • Murthi P, Kalionis B, Ghabrial H, Dunlop ME, Smallwood RA, Morgan DJ, Sewell RB (2006) Kupffer cell function during erythrocytic stage of malaria. J Gastroenterol Hepatol 21:313–318

    Article  PubMed  CAS  Google Scholar 

  • Nobes MS, Ghabrial H, Simms KM, Smallwood RB, Morgan DJ, Sewell RB (2002) Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. J Gastroenterol Hepatol 17(5):598–605

    Article  PubMed  Google Scholar 

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennell LM, Galligan CL, Fish EN (2012) Sex affects immunity. J Autoimmun 38:282–291

    Article  Google Scholar 

  • Roberts CW, Satoskar A, Alexander J (1996) Sex steroids, pregnancy-associated hormones and immunity to parasitic infection. Parasitol Today 12:382–388

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Walker W, Alexander J (2003) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 3:476–488

    Google Scholar 

  • Rupani AB, Amarapurkar AD (2009) Hepatic changes in fatal malaria: an emerging problem. Ann Trop Med Parasitol 103:119–127

    Article  PubMed  CAS  Google Scholar 

  • Sakiani S, Olsen NJ, Kovacs WJ (2013) Gonadal steroids and humoral immunity. Nat Rev Endocrinol 9:56–62

    Article  PubMed  CAS  Google Scholar 

  • Santourlidis S, Wernet P, Ghanjati F, Graffmann N, Springer J, Kriegs C, Zhao X, Brands J, Araúzo-Bravo MJ, Neves R, Koegler G, Uhrberg M (2011) Unrestricted somatic stemm cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 6:60–69

    Article  PubMed  CAS  Google Scholar 

  • Savva A, Roger T (2013) Targeting Toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 4:1–16

    Article  Google Scholar 

  • Seli E, Arici A (2002) Sex steroids and the immune system. Immunol Allergy Clin N Am 22:407–408

    Article  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  PubMed  CAS  Google Scholar 

  • Stephens R, Culleton RL, Lamb TJ (2012) The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 28:73–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Shao Y, Bennet TA, Shankar RA, Wightman PD et al (2006) The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem 128:37427–37434

    Article  Google Scholar 

  • Watanabe K, Hamano S, Noda K, Koga M, Tada I (1999) Strongyloides ratti: additive effect of testosterone implantation and carbon injection on the susceptibility of female mice. Parasitol Res 85:522–526

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe A, Sekikawa H, Watanabe H, Mannoor K, Morshed SR, Halder RC, Kawamura T, Kosaka T, Miyaji C, Kawamura H, Seki S, Abo T (2001) Association of intermediate T cell receptor cells, mainly their NK1.1(-) subset, with protection from malaria. Cell Immunol 207(1):28–35

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Stuebig H, Koenigk E (1982) Development of Plasmodium chabaudi in mouse red blood cells: structural properties of the host and parasite membranes. J Protozool 29:60–66

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Helwig M, Schillinger G, Speth V (1988a) Cryptic disposition of antigenic parasite proteins in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 30(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Helwig M, Schillinger G, Speth V, Wiser MF (1988b) Expression of the parasite protein Pc90 in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Eur J Cell Biol 47(2):157–164

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Mossmann H, Helwig M, Schillinger G (1988c) Resistance to Plasmodium chabaudi in B10 mice: influence of the H-2 complex and testosterone. Infect Immun 56:2400–2406

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wunderlich F, Marinovski P, Benten WP, Schmitt-Wrede HP, Mossmann H (1991) Testosterone and other gonadal factor(s) restrict the efficacy of genes controlling resistance to Plasmodium chabaudi malaria. Parasite Immunol 13:357–367

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Maurin W, Benten WP, Schmitt-Wrede HP (1993) Testosterone impairs efficacy of protective vaccination against P. chabaudi malaria. Vaccine 11(11):1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Dkhil MA, Mehnert LI, Braun JV, El-Khadragy M, Borsch E, Hermsen D, Benten WP, Pfeffer K, Mossmann H, Krücken J (2005) Testosterone responsiveness of spleen and liver in female lymphotoxin-beta receptor-deficient mice resistant to blood-stage malaria. Microbes Infect 7:121–129

    Article  Google Scholar 

  • Zhang H, Zhao J, Wang P, Qiao Z (2001) Effect of testosterone on Leishmania donovani infection of macrophages. Parasitol Res 87:674–676

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, Zhang X, Chen Z, Zhao M, Li JC (2013) Toll-like receptor -1,-2, and -6 polymorphisms and pulmonary tubercolosis susceptibility: a systemic review and meta-analysis. PLoS One 8(5):e63357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Santourlidis and F. Ghanjati for expert advice in DNA methylation. The authors extend appreciations to the Deanship of Scientific Research at King Saud University for funding the work through the research group project IRG14-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Dkhil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Quraishy, S., Dkhil, M.A., S. Abdel-Baki, AA. et al. Testosterone persistently dysregulates hepatic expression of Tlr6 and Tlr8 induced by Plasmodium chabaudi malaria. Parasitol Res 113, 3609–3620 (2014). https://doi.org/10.1007/s00436-014-4026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4026-2

Keywords

Navigation