Skip to main content
Log in

Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellum receives sensory signals from spinocerebellar (lower limbs) and dorsal column nuclei (upper limbs) mossy fibers. In the cerebellum, mossy fibers terminate in bands that are topographically aligned with stripes of Purkinje cells. While much is known about the molecular heterogeneity of Purkinje cell stripes, little is known about whether mossy fiber compartments have distinct molecular profiles. Here, we show that the vesicular glutamate transporters VGLUT1 and VGLUT2, which mediate glutamate uptake into synaptic vesicles of excitatory neurons, are expressed in complementary bands of mossy fibers in the adult mouse cerebellum. Using a combination of immunohistochemistry and anterograde tracing, we found heavy VGLUT2 and weak VGLUT1 expression in bands of spinocerebellar mossy fibers. The adjacent bands, which are in part comprised of dorsal column nuclei mossy fibers, strongly express VGLUT1 and weakly express VGLUT2. Simultaneous injections of fluorescent tracers into the dorsal column nuclei and lower thoracic–upper lumbar spinal cord revealed that upper and lower limb sensory pathways innervate adjacent VGLUT1/VGLUT2 parasagittal bands. In summary, we demonstrate that VGLUT1 and VGLUT2 are differentially expressed by dorsal column nuclei and spinocerebellar mossy fibers, which project to complementary cerebellar bands and respect common compartmental boundaries in the adult mouse cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akintunde A, Eisenman LM (1994) External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat 7(1–2):75–86

    Article  PubMed  CAS  Google Scholar 

  • Alisky JM, Tolbert DL (1997) Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe. Neuroscience 80(2):373–388

    Article  PubMed  CAS  Google Scholar 

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681. doi:10.1038/nrn2698

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R (2009) A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol 517(4):524–538. doi:10.1002/cne.22167

    Article  PubMed  CAS  Google Scholar 

  • Arsenio Nunes ML, Sotelo C (1985) Development of the spinocerebellar system in the postnatal rat. J Comp Neurol 237(3):291–306. doi:10.1002/cne.902370302

    Article  PubMed  CAS  Google Scholar 

  • Balschun D, Moechars D, Callaerts-Vegh Z, Vermaercke B, Van Acker N, Andries L, D’Hooge R (2010) Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning. Cereb Cortex 20(3):684–693. doi:10.1093/cercor/bhp133

    Article  PubMed  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992a) Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann N Y Acad Sci 656:566–579

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992b) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317(3):250–270. doi:10.1002/cne.903170304

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18(21):8648–8659

    PubMed  CAS  Google Scholar 

  • Berretta S, Perciavalle V, Poppele RE (1991) Origin of cuneate projections to the anterior and posterior lobes of the rat cerebellum. Brain Res 556(2):297–302

    Article  PubMed  CAS  Google Scholar 

  • Boegman RJ, Parent A, Hawkes R (1988) Zonation in the rat cerebellar cortex: patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments. Brain Res 448(2):237–251

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81(2):539–568

    PubMed  CAS  Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291(4):538–552. doi:10.1002/cne.902910405

    Article  PubMed  CAS  Google Scholar 

  • Cerminara NL, Makarabhirom K, Rawson JA (2003) Somatosensory properties of cuneocerebellar neurones in the main cuneate nucleus of the rat. Cerebellum 2(2):131–145. doi:10.1080/14734220309406

    Article  PubMed  Google Scholar 

  • Chockkan V, Hawkes R (1994) Functional and antigenic maps in the rat cerebellum: zebrin compartmentation and vibrissal receptive fields in lobule IXa. J Comp Neurol 345(1):33–45. doi:10.1002/cne.903450103

    Article  PubMed  CAS  Google Scholar 

  • Chung SH, Marzban H, Watanabe M, Hawkes R (2009) Phospholipase Cbeta4 expression identifies a novel subset of unipolar brush cells in the adult mouse cerebellum. Cerebellum 8(3):267–276. doi:10.1007/s12311-009-0092-x

    Article  PubMed  CAS  Google Scholar 

  • Dino MR, Willard FH, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28(2):99–123

    Article  PubMed  CAS  Google Scholar 

  • Ekerot CF, Larson B (1972) Differential termination of the exteroceptive and proprioceptive components of the cuneocerebellar tract. Brain Res 36(2):420–424

    Article  PubMed  CAS  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26(36):9184–9195. doi:10.1523/JNEUROSCI.1610-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A 99(22):14488–14493. doi:10.1073/pnas.222546799

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27(2):98–103. doi:10.1016/j.tins.2003.11.005

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Tvrdik P, Makki N, Paxinos G, Watson C (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-Cre genetic labeling. Cerebellum. doi:10.1007/s12311-011-0266-1

  • Furue M, Uchida S, Shinozaki A, Imagawa T, Hosaka YZ, Uehara M (2010) Spinocerebellar projections from the cervical and lumbosacral enlargements in the chicken spinal cord. Brain Behav Evol 76(3–4):271–278. doi:10.1159/000321910

    Article  PubMed  Google Scholar 

  • Furue M, Uchida S, Shinozaki A, Imagawa T, Hosaka YZ, Uehara M (2011) Trajectories in the spinal cord and the mediolateral spread in the cerebellar cortex of spinocerebellar fibers from the unilateral lumbosacral enlargement in the chicken. Brain Behav Evol 77(1):45–54. doi:10.1159/000323380

    Article  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57(2):239–255

    Article  PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22(13):5442–5451

    PubMed  CAS  Google Scholar 

  • Gravel C, Hawkes R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 291(1):79–102. doi:10.1002/cne.902910107

    Article  PubMed  CAS  Google Scholar 

  • Gravel C, Eisenman LM, Sasseville R, Hawkes R (1987) Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J Comp Neurol 265(2):294–310. doi:10.1002/cne.902650211

    Article  PubMed  CAS  Google Scholar 

  • Hackett TA, Takahata T, Balaram P (2011) VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway. Hear Res 274(1–2):129–141. doi:10.1016/j.heares.2010.11.001

    Article  PubMed  CAS  Google Scholar 

  • Hallem JS, Thompson JH, Gundappa-Sulur G, Hawkes R, Bjaalie JG, Bower JM (1999) Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience 93(3):1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13(10):1233–1239. doi:10.1038/nn.2637

    Article  PubMed  CAS  Google Scholar 

  • Haring JH, Warren S, Rowinski MJ (1984) Distribution of cerebellar mossy fibers arising from neurons of the raccoon main cuneate nucleus. Brain Res 323(1):164–167

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Turner RW (1994) Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol 346(4):499–516. doi:10.1002/cne.903460404

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Kuemerle B (1997) The compartmentalization of the cerebellum. Annu Rev Neurosci 20:61–90. doi:10.1146/annurev.neuro.20.1.61

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Voogd J (1986) Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 369(1–2):383–387

    Article  PubMed  CAS  Google Scholar 

  • Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, Kaneko T (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K, Sakata-Haga H, Takeda J, Fukui Y, Nogami H (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107(1):23–31

    Article  PubMed  CAS  Google Scholar 

  • Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96

    Article  PubMed  CAS  Google Scholar 

  • Jasmin L, Courville J (1987) Distribution of external cuneate nucleus afferents to the cerebellum: II. Topographical distribution and zonal pattern—an experimental study with radioactive tracers in the cat. J Comp Neurol 261(4):497–514. doi:10.1002/cne.902610404

    Article  PubMed  CAS  Google Scholar 

  • Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61(4):935–954

    Article  PubMed  CAS  Google Scholar 

  • Ji Z, Jin Q, Vogel MW (1997) Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum. J Comp Neurol 378(3):354–362. doi:10.1002/(SICI)1096-9861(19970217)378:3<354::AID-CNE4>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42(4):243–250

    Article  PubMed  CAS  Google Scholar 

  • Kirvell SL, Esiri M, Francis PT (2006) Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J Neurochem 98(3):939–950. doi:10.1111/j.1471-4159.2006.03935.x

    Article  PubMed  CAS  Google Scholar 

  • Lakke EA, Guldemond JM, Voogd J (1986) The ontogeny of the spinocerebellar projection in the chicken. A study using WGA-HRP as a tracer. Acta Histochem Suppl 32:47–51

    PubMed  CAS  Google Scholar 

  • Larouche M, Che PM, Hawkes R (2006) Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol 494(2):215–227. doi:10.1002/cne.20791

    Article  PubMed  CAS  Google Scholar 

  • Leclerc N, Dore L, Parent A, Hawkes R (1990) The compartmentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res 506(1):70–78

    Article  PubMed  CAS  Google Scholar 

  • Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars) 67(3):207–218

    Google Scholar 

  • Lundberg A (1971) Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res 12(3):317–330

    PubMed  CAS  Google Scholar 

  • Marani E, Voogd J (1977) An acetylcholinesterase band-pattern in the molecular layer of the cat cerebellum. J Anat 124(Pt 2):335–345

    PubMed  CAS  Google Scholar 

  • Massopust LC, Hauge DH, Ferneding JC, Doubek WG, Taylor JJ (1985) Projection systems and terminal localization of dorsal column afferents: an autoradiographic and horseradish peroxidase study in the rat. J Comp Neurol 237(4):533–544. doi:10.1002/cne.902370409

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Ragnarson B, Grant G (1991) Topographic relationship between sagittal Purkinje cell bands revealed by a monoclonal antibody to zebrin I and spinocerebellar projections arising from the central cervical nucleus in the rat. Exp Brain Res 84(1):133–141

    Article  PubMed  CAS  Google Scholar 

  • Nunzi MG, Russo M, Mugnaini E (2003) Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum. Neuroscience 122(2):359–371

    Article  PubMed  CAS  Google Scholar 

  • Oberdick J, Baader SL, Schilling K (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 21(9):383–390

    Article  PubMed  CAS  Google Scholar 

  • Okado N, Ito R, Homma S (1987) The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick. Anat Embryol (Berl) 176(2):175–182

    Article  CAS  Google Scholar 

  • Ozol KO, Hawkes R (1997) Compartmentation of the granular layer of the cerebellum. Histol Histopathol 12(1):171–184

    PubMed  CAS  Google Scholar 

  • Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412(1):95–111. doi:10.1002/(SICI)1096-9861(19990913)412:1<95:AID-CNE7>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  • Pakan JM, Wylie DR (2008) Congruence of zebrin II expression and functional zones defined by climbing fiber topography in the flocculus. Neuroscience 157(1):57–69. doi:10.1016/j.neuroscience.2008.08.062

    Article  PubMed  CAS  Google Scholar 

  • Pakan JM, Graham DJ, Wylie DR (2010) Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. J Comp Neurol 518(2):175–198. doi:10.1002/cne.22192

    Article  PubMed  CAS  Google Scholar 

  • Pang YW, Ge SN, Nakamura KC, Li JL, Xiong KH, Kaneko T, Mizuno N (2009) Axon terminals expressing vesicular glutamate transporter VGLUT1 or VGLUT2 within the trigeminal motor nucleus of the rat: origins and distribution patterns. J Comp Neurol 512(5):595–612. doi:10.1002/cne.21894

    Article  PubMed  Google Scholar 

  • Paukert M, Huang YH, Tanaka K, Rothstein JD, Bergles DE (2010) Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J Neurosci 30(21):7290–7299. doi:10.1523/JNEUROSCI.5118-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Quy PN, Fujita H, Sakamoto Y, Na J, Sugihara I (2011) Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. J Comp Neurol 519(5):874–899. doi:10.1002/cne.22555

    Article  PubMed  Google Scholar 

  • Reeber SL, Sillitoe RV (2011) Patterned expression of a cocaine- and amphetamine-regulated transcript (CART) peptide reveals complex circuit topography in the rodent cerebellar cortex. J Comp Neurol. doi:10.1002/cne.22601

  • Reeber SL, Gebre SA, Sillitoe RV (2011) Fluorescence mapping of afferent topography in three dimensions. Brain Struct Funct. doi:10.1007/s00429-011-0304-2

  • Ruigrok TJ (2010) Ins and outs of cerebellar modules. Cerebellum. doi:10.1007/s12311-010-0164-y

  • Schilling K, Schmidt HH, Baader SL (1994) Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development. Neuroscience 59(4):893–903

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23(16):6576–6585

    PubMed  CAS  Google Scholar 

  • Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R (2008a) Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci 28(11):2820–2826. doi:10.1523/JNEUROSCI.4145-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008b) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 28(47):12150–12162. doi:10.1523/JNEUROSCI.2059-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30(30):10015–10024. doi:10.1523/JNEUROSCI.0653-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500(6):1076–1092. doi:10.1002/cne.21219

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24(40):8771–8785. doi:10.1523/JNEUROSCI.1961-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Malherbe P, Broger C, Jahn R (2002) Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3(8):798–803. doi:10.1093/embo-reports/kvf159

    Article  PubMed  CAS  Google Scholar 

  • Tolbert DL, Gutting JC (1997) Quantitative analysis of cuneocerebellar projections in rats: differential topography in the anterior and posterior lobes. Neuroscience 80(2):359–371

    Article  PubMed  CAS  Google Scholar 

  • Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22(1):142–155

    PubMed  CAS  Google Scholar 

  • Vig J, Goldowitz D, Steindler DA, Eisenman LM (2005) Compartmentation of the reeler cerebellum: segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells. Neuroscience 130(3):735–744. doi:10.1016/j.neuroscience.2004.09.051

    Article  PubMed  CAS  Google Scholar 

  • Vogel MW, Prittie J (1994) Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant. J Comp Neurol 343(2):341–351. doi:10.1002/cne.903430212

    Article  PubMed  CAS  Google Scholar 

  • Vogel MW, Ji Z, Millen K, Joyner AL (1996) The Engrailed-2 homeobox gene and patterning of spinocerebellar mossy fiber afferents. Brain Res Dev Brain Res 96(1–2):210–218

    Article  PubMed  CAS  Google Scholar 

  • Voogd J, Broere G, van Rossum J (1969) The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiatr Neurol Neurochir 72(1):137–151

    PubMed  CAS  Google Scholar 

  • Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23(11):4645–4656

    PubMed  CAS  Google Scholar 

  • Wu HS, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411(1):97–118. doi:10.1002/(SICI)1096-9861(19990816)411:1<97:AID-CNE8>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  • Yaginuma H, Matsushita M (1989) Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 281(2):298–319. doi:10.1002/cne.902810211

    Article  PubMed  CAS  Google Scholar 

  • Yan XX, Jen LS, Garey LJ (1993) Parasagittal patches in the granular layer of the developing and adult rat cerebellum as demonstrated by NADPH-diaphorase histochemistry. Neuroreport 4(11):1227–1230

    Article  PubMed  CAS  Google Scholar 

  • Zeng C, Shroff H, Shore SE (2011) Cuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2. Neuroscience 176:142–151. doi:10.1016/j.neuroscience.2010.12.010

    Article  PubMed  CAS  Google Scholar 

  • Zhang FX, Pang YW, Zhang MM, Zhang T, Dong YL, Lai CH, Shum DK, Chan YS, Li JL, Li YQ (2011) Expression of vesicular glutamate transporters in peripheral vestibular structures and vestibular nuclear complex of rat. Neuroscience 173:179–189. doi:10.1016/j.neuroscience.2010.11.013

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Nannapaneni N, Shore S (2007) Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. J Comp Neurol 500(4):777–787. doi:10.1002/cne.21208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by new investigator start-up funds from Albert Einstein College of Medicine of Yeshiva University to RVS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe.

Additional information

S. A. Gebre, S. L. Reeber contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2011_339_MOESM1_ESM.tif

Supplementary Fig. 1 VGLUT1 and VGLUT2 are expressed in heterogeneous mossy fiber domains in the hemispheres. a. VGLUT2-immunoreactive mossy fiber domains in Crus1 of mouse. b. Compared to VGLUT2, VGLUT1-immunoreactive mossy fiber terminals are more widely distributed in Crus1. c. VGLUT2 and VGLUT1 expression overlapped within a common domain. The arrows indicate a boundary between a subset of mossy fibers that are heavily immunoreactive for VGLUT1, but are only weakly reactive for VGLUT2. (TIFF 4,917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebre, S.A., Reeber, S.L. & Sillitoe, R.V. Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2. Brain Struct Funct 217, 165–180 (2012). https://doi.org/10.1007/s00429-011-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0339-4

Keywords

Navigation