Skip to main content
Log in

Phospholipase Cβ4 Expression Identifies a Novel Subset of Unipolar Brush Cells in the Adult Mouse Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons of the granular layer. Previous studies have shown that there are two distinct subsets of UBCs present in the mice cerebellar cortex: calcium-binding protein calretinin (CR) positive and metabotropic glutamate receptor (mGluR)1α positive. In this study, we identify phospholipase C (PLC) β4 as an antigenic marker of a novel subset of UBCs. Double immunolabeling reveals that none of the CR+ subset expresses PLCβ4. In contrast, most members of the mGluR1α subset also express PLCβ4. In addition, 65% of the PLCβ4+ subset does not express mGluR1α. Thus, there are three distinct UBC subsets in the mouse cerebellum: CR+/PLCβ4−/mGluR1α−, PLCβ4+/mGluR1α−/CR−, and mGluR1α+/PLCβ4+/CR−. Each has a different topographical distribution, both between lobules and mediolaterally within the vermis. The development of PLCβ4 expression in UBCs is exclusively postnatal—first seen only at P12 and mature at about 3 weeks. A distinct subset of PLCβ4+ UBCs is also present in primary cerebellar cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Altman J, Bayer SA (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 29:265–274

    Article  PubMed  CAS  Google Scholar 

  2. Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180

    Article  PubMed  CAS  Google Scholar 

  3. Dino MR, Nunzi MG, Anelli R, Mugnaini E (2000) Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res 124:123–137

    Article  PubMed  CAS  Google Scholar 

  4. Nunzi MG, Mugnaini E (2000) Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol 422:55–65

    Article  PubMed  CAS  Google Scholar 

  5. Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 434:329–341

    Article  PubMed  CAS  Google Scholar 

  6. Floris A, Dino M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol Berl 189:495–520

    Article  PubMed  CAS  Google Scholar 

  7. Nunzi MG, Shigemoto R, Mugnaini E (2002) Differential expression of calretinin and metabotropic glutamate receptor mGluR1 alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol 451:189–199

    Article  PubMed  CAS  Google Scholar 

  8. Sekerková G, Ilijic E, Mugnaini E (2004) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127:845–858

    Article  PubMed  Google Scholar 

  9. Nunzi MG, Russo M, Mugnaini E (2003) Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum. Neuroscience 122:359–371

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M et al (2004) Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1alpha and 1,4,5-triphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 20:2929–2944

    Article  PubMed  Google Scholar 

  11. Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B et al (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141

    Article  PubMed  CAS  Google Scholar 

  12. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  13. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    Article  PubMed  CAS  Google Scholar 

  14. Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody. J Immunol 127:1024–1029

    PubMed  CAS  Google Scholar 

  15. Eisenman LM, Hawkes R (1993) Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol 335:586–605

    Article  PubMed  CAS  Google Scholar 

  16. Marzban H, Sillitoe RV, Hoy M, Chung SH, Rafuse VR, Hawkes R (2004) Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. J Neurocytol 33:117–130

    Article  PubMed  CAS  Google Scholar 

  17. Schwaller B, Buchwald P, Blümcke I, Celio MR, Hunziker W (1994) Characterization of a polyclonal antiserum against the purified recombinant calcium-binding protein calretinin. Cell Calcium 14:639–648

    Article  Google Scholar 

  18. Tanaka J, Nakagawa S, Kushiya E, Yamasaki M, Fukaya M, Iwanaga T et al (2000) Gq protein α subunits Gαq and Gα11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur J Neurosci 12:781–792

    Article  PubMed  CAS  Google Scholar 

  19. Sarna JR, Marzban H, Watanabe M, Hawkes R (2006) Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 496:303–313

    Article  PubMed  CAS  Google Scholar 

  20. Jiang H, Lyubarsky A, Dodd R, Vardi N, Pugh E, Baylor D et al (1996) Phospholipase C β4 is involved in modulating the visual response in mice. Proc Natl Acad Sci U S A 93:14598–14601

    Article  PubMed  CAS  Google Scholar 

  21. Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23:6576–6585

    PubMed  CAS  Google Scholar 

  22. Furuya S, Makino A, Hirabayashi Y (1998) An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res Prot 3:192–198

    Article  CAS  Google Scholar 

  23. Tabata T, Sawada S, Araki K, Bono Y, Furuya S, Kano M (2000) A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J Neurosci Meth 104:45–53

    Article  CAS  Google Scholar 

  24. Marzban H, Khanzada U, Shabir S, Hawkes R, Langnaese K, Smalla K et al (2003) Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their location to parasagittal stripes. J Comp Neurol 462:286–301

    Article  PubMed  CAS  Google Scholar 

  25. Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412:95–111

    Article  PubMed  CAS  Google Scholar 

  26. Armstrong C, Krueger-Naug AM, Currie WC, Hawkes R (2000) Constitutive expression of the 25 kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 416:383–397

    Article  PubMed  CAS  Google Scholar 

  27. Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50:235–244

    PubMed  CAS  Google Scholar 

  28. Hawkes R, Brochu G, Doré L, Gravel C, Leclerc N (1992) Zebrins: molecular markers of compartmentation in the cerebellum. In: Llinás R, Sotelo C (eds) The cerebellum revisited. Springer, New York, NY, pp 22–55

    Google Scholar 

  29. Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52

    Article  PubMed  CAS  Google Scholar 

  30. Herrup K, Kuemerle B (1997) The compartmentalization of the cerebellum. Ann Rev Neurosci 20:61–90

    Article  PubMed  CAS  Google Scholar 

  31. Oberdick J, Baader SL, Schilling K (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 21:383–390

    Article  PubMed  CAS  Google Scholar 

  32. Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61:935–954

    Article  PubMed  CAS  Google Scholar 

  33. Akintunde A, Eisenman LM (1994) External cuneocerebellar projections and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat 7:75–86

    Article  PubMed  CAS  Google Scholar 

  34. Voogd J, Gerrits NM, Ruigrok TJ (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579

    Article  PubMed  CAS  Google Scholar 

  35. Yan XX, Yen LS, Garey LJ (1993) Parasagittal patches in the granular layer of the developing and adult rat cerebellum as demonstrated by NADPH-diaphorase histochemistry. NeuroReport 4:1227–1230

    Article  PubMed  CAS  Google Scholar 

  36. Hawkes R, Turner RW (1994) Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol 346:499–516

    Article  PubMed  CAS  Google Scholar 

  37. Schilling K, Schmidt HH, Baader SL (1994) Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development. Neuroscience 59:893–903

    Article  PubMed  CAS  Google Scholar 

  38. Ozol KO, Hawkes R (1997) The compartmentation of the granular layer of the cerebellum. Histol Histopathol 12:171–184

    PubMed  CAS  Google Scholar 

  39. Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120:2081–2090

    PubMed  CAS  Google Scholar 

  40. Hawkes R, Herrup K (1996) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurobiol 6:147–158

    Article  Google Scholar 

  41. Abbott LC, Jacobowitz DM (1995) Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anat Embryol Berl 191:541–559

    Article  PubMed  CAS  Google Scholar 

  42. Marzban H, Chung S, Watanabe M, Hawkes R (2007) Phospholipase Cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 502:857–871

    Article  PubMed  Google Scholar 

  43. Anelli R, Mugnaini E (2001) Enrichment of unipolar brush cell-like neurons in primary rat cerebellar cultures. Anat Embryol (Berl) 203:283–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants from the Canadian Institutes of Health Research (RH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hawkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, SH., Marzban, H., Watanabe, M. et al. Phospholipase Cβ4 Expression Identifies a Novel Subset of Unipolar Brush Cells in the Adult Mouse Cerebellum. Cerebellum 8, 267–276 (2009). https://doi.org/10.1007/s12311-009-0092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0092-x

Keywords

Navigation