Skip to main content
Log in

Iron and reactive oxygen responses in Pinus sylvestris root cortical cells infected with different species of Heterobasidion annosum sensu lato

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Defence mechanisms in trees are not well understood. We assessed whether distribution of iron ions and their co-localisation with reactive oxygen species in Pinus sylvestris root cells reflect differential preferences of the pathogens Heterobasidion annosum sensu stricto, H. parviporum and H. abietinum to the host. Strains of H. annosum s.s. characterised by a greater preference for P. sylvestris induced accumulation of superoxide (O2 ) in host cells 6 h after inoculation, whereas two peaks in accumulation of O2 (after 4 and 48 h) were observed after infection with strains of the pathogens H. parviporum and H. abietinum, which have a lower preference for P. sylvestris. Moreover, strains of H. annosum s.s. caused increased production of hydrogen peroxide (H2O2) in P. sylvestris cells, in contrast with strains of the other two species (H. parviporum and H. abietinum). Following inoculation with H. annosum s.s. strains, H2O2 was correlated negatively with O2 and correlated positively with ferrous iron (Fe2+). Co-localisation of Fe3+ with H2O2 may suggest that they are involved in inducing hypersensitive responses and eventually cell death in roots inoculated with H. annosum s.s. strains, in contrast with H. parviporum, in which other mechanisms operate when the host is parasitised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HR:

Hypersensitive response

ROS:

Reactive oxygen species

References

  • Adomas A, Heller G, Li G, Olson Å, Chu TM, Osborne J, Craig D, Van Zyl L, Wolfinger R, Sederoff R, Dean RA, Stenlid J, Finlay R, Asiegbu FO (2007) Transcript profiling of conifer pathosystem: response of Pinus sylvestris root tissue to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27:1441–1458

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  PubMed  CAS  Google Scholar 

  • Asiegbu FO, Daniel G, Johansson M (1994) Defence related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref. Physiol Mol Plant Pathol 45:1–19

    Article  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved methods for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  PubMed  CAS  Google Scholar 

  • Barash I, Zion R, Krikun J, Nachmias A (1988) Effect of iron status on Verticillium wilt disease and on in vitro production of siderophores by Verticillium dahliae. J Plant Nutr 11:893–905

    Article  CAS  Google Scholar 

  • Chi MH, Park SY, Kim S, Lee YH (2009) A novel pathogenicity gene is required in the rice blast fungus to supress the basal defences of the host. PLoS Pathog 5:1–16

    Article  Google Scholar 

  • Dalman K, Olson Ǻ, Stenlid J (2010) Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato. Mol Ecol 19:4979–4993

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant system vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D (2009) Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol 150:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  PubMed  CAS  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against beetles and other pests. New Phytol 167:353–375

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilities plant infection by the necretrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Haalsal DM, Forrester RI (1977) Effects of certain cations on the formation and infectivity of Phytophthora zoospores. 1. Effects of calcium, magnesium, potassium and iron ions. Can J Microbiol 23:994–1001

    Article  Google Scholar 

  • Hendrix JW, Guttman SM, Wightman DL (1969) Cation and sterol effects on growth of Phytophthora parasitica var. nicotianae. Phytopathology 59:1620–1624

    PubMed  CAS  Google Scholar 

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plant–microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Ingestad T (1979) Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings. Physiol Plant 45:373–380

    Article  CAS  Google Scholar 

  • Iwai T, Seo S, Mitsuhara I, Ohashi Y (2007) Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol 48:915–924

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki H, Megaruno R, Asano Y, Odagiri S, Li CT, Shoumura K (2008) Chelatable Fe(II) is generated in the rat kidneys exposed to ischemia and reperfusion, and a divalent metal chelator, 2,2′-dipyridyl, attenuates the acute ischemia/reperfusion-injury of the kidneys: a histochemical study by the perfusion-Perls and -Turnbull methods. Arch Histol Cytol 71:101–114

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Denekamp M, Asiegbu FO (1999) Production and isoenzyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol Res 103:365–371

    Article  CAS  Google Scholar 

  • Johansson SM, Lundgren LN, Asiegbu FO (2004) Initial reactions in sapwood of Norway spruce and Scots pine after wounding and infection by Heterobasidion parviporum and H. annosum. Forest Pathol 34:197–210

    Article  Google Scholar 

  • Jørgensen HJL, Lübeck PS, Thordal-Christensen H, de Neergaard E, Smedegaard-Petersen V (1998) Mechanism of induced resistence in barley against Drechslera teres Phytopathology 88:698–707

    Google Scholar 

  • Karjalainen R (1996) Genetic relatedness among strains of Heterobasidion annosum as detected by random amplified polymorphic DNA markers. J Phytopathol 144:399–404

    Article  Google Scholar 

  • Kärkönen A, Warinowski T, Teeri TH, Simola LK, Fry SC (2009) On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells—peroxidases after elicitation. Planta 230:553–567

    Article  PubMed  Google Scholar 

  • Karlsson M, Hietala AM, Kvaalen H, Solheim H, Olson Å, Stenlid J, Fossdal CG (2007) Quantification of host and pathogen DNA and RNA transcripts in the interaction of Norway spruce with Heterobasidion parviporum. Physiol Mol Plant Pathol 70:99–109

    Article  CAS  Google Scholar 

  • Karlsson M, Elfstrand M, Stenlid J, Olson Å (2008) A fungal cytochrome P450 is expressed during the interaction between the fungal pathogen Heterobasidion annosum sensu lato and conifer trees. Mitochondrial DNA 19:115–120

    CAS  Google Scholar 

  • Kasuga T, Woods C, Woodward S, Mitchelson K (1993) Heterobasidion annosum 5.8S ribosomal DNA and internal spacer transcribed sequence: rapid identification of European intersterility groups by ribosomal DNA restriction polymorphism. Curr Genet 24:433–436

    Article  PubMed  CAS  Google Scholar 

  • Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Communicationes Instituti Forestalis Fenniae 94:25

    Google Scholar 

  • Korhonen K, Stenlid J (1998) Biology of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control, vol 399. CAB International, New York, pp 346–360

    Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Greenshields DL, Sammynaiken R, Hirji RN, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defence responses. J Cell Sci 120:596–605

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC, Gil-ad NL (2001) Mechanism of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33–41

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Carver TLW, Prats E (2006) NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J Exp Bot 57:489–505

    Article  PubMed  CAS  Google Scholar 

  • Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control, vol 399. CAB International, New York, pp 346–360

    Google Scholar 

  • Paajanen LM (1993) Fe promotes decay capacity of Serpula lacymans. Publication no. 10008 of the International Research Group on Wood Preservation, Stockholm, Sweden

  • Pierre JL, Fontecave M (1999) Iron and activated oxygen species in biology: the basic chemistry. Biometals 12:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Punja ZK (2006) Influence of iron on Cylindrocarpon root rot development on ginseng. Phytopathology 96:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, Van Kan JAL (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol Plant Pathol 3:227–238

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitor induce a transient release of active oxygen species from cultured spruce cells that are dependent on Ca2+ and protein-kinase activity. Planta 187:136–141

    Article  CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GHJ, Collinge DB et al (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Harris PLR, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tenberge KB, Beckedorf M, Hoppe B, Schouten A, Solf M, von den Driesch M (2002) In situ localization of AOS in host–pathogen interactions. Microsc Microanal 8:250–251

    Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Unger Ch, Kleta S, Jandl G, von Tiedeman A (2005) Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J Phytopathol 153:15–26

    Article  CAS  Google Scholar 

  • Vellosillo T, Vincente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448

    Article  PubMed  CAS  Google Scholar 

  • Werner A (2001) Growth of Heterobasidion annosum (Fr.) Bref. through bark of one-year-old Pinus sylvestris seedlings grown in vitro. Dendrobiology 46:65–73

    Google Scholar 

  • Werner A, Lakomy P (2002) Interspecific variation in Heterobasidion annosum for mortality rate Pinus sylvestris and Picea abies seedlings grown in pure culture. Mycologia 94:856–861

    Article  PubMed  Google Scholar 

  • Werner A, Łakomy P (2002) Host specialization of IS-group isolates of Heterobasidion annosum to Scots pine, Norway spruce and common fir in field inoculation experiments. Dendrobiology 47:59–68

    Google Scholar 

  • Werner A, Łakomy P, Idzikowska K, Zadworny M (2005) Initial stages of host–pathogen interaction between Pinus sylvestris seedling roots and the P-, S- and F-intersterility group isolates of Heterobasidion annsoum. Dendrobiology 54:57–63

    Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research received financial support from the Polish Ministry of Science and Higher Education (Project No. NN 309 136935) and the Institute of Dendrology, Polish Academy of Sciences. We would like to thank Ludmiła Bladocha and Anna Blaszkowiak for excellent technical support. Two anonymous reviewers provided helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Mucha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, J., Guzicka, M., Łakomy, P. et al. Iron and reactive oxygen responses in Pinus sylvestris root cortical cells infected with different species of Heterobasidion annosum sensu lato. Planta 236, 975–988 (2012). https://doi.org/10.1007/s00425-012-1646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1646-6

Keywords

Navigation