Skip to main content
Log in

RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Inositol plays a role in membrane trafficking and signaling in addition to regulating cellular metabolism and controlling growth. In plants, the myo-inositol-1-phosphate is synthesized from glucose 6-phosphate in a reaction catalyzed by the enzyme myo-inositol-1-phosphate synthase (EC 5.5.1.4). Inositol can be converted into phytic acid (phytate), the most abundant form of phosphate in seeds. The path to phytate has been suggested to proceed via the sequential phosphorylation of inositol phosphates, and/or in part via phosphatidylinositol phosphate. Soybean [Glycine max (L.) Merrill] lines were produced using interfering RNA (RNAi) construct in order to silence the myo-inositol-1-phosphate (GmMIPS1) gene. We have observed an absence of seed development in lines in which the presence of GmMIPS1 transcripts was not detected. In addition, a drastic reduction of phytate (InsP6) content was achieved in transgenic lines (up to 94.5%). Our results demonstrated an important correlation between GmMIPS1 gene expression and seed development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMS:

Ethyl methanesulfonate

MIPS:

myo-Inositol 1-phosphate synthase

RNAi:

Interfering RNA

RT-PCR:

Reverse transcription polymerase chain reaction

References

  • Abu-Abied M, Holland D (1994) The gene c-ino1 from Citrus paradisi is highly homologous to tur1 and ino1 from yeast and Spirodela encoding for myo-inositol phosphate synthase. Plant Physiol 106:1689

    Article  PubMed  CAS  Google Scholar 

  • Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merril) plants at high frequency. Theor Appl Genet 101:1–6

    Article  Google Scholar 

  • Brearley CA, Hanke DE (1996a) Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem J 314:227–233

    PubMed  CAS  Google Scholar 

  • Brearley CA, Hanke DE (1996b) Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemical similar to the products of breakdown of InsP6 in vitro by wheat bran phytase. Biochem J 318:279–286

    PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  PubMed  CAS  Google Scholar 

  • Canini A, Leonardi D, Ruggeri S, Carnovale E, Caiola MG (2001) Intracellular localization of calcium, phosphorus and nitrogen in common bean seeds (Phaseolus vulgaris L. cv. Borlotto) by SEM, ESI and EELS techniques. Plant Biosyst 135:123–132

    Article  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Koizumi N, Kusano T, Sano H (2000) Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants. Plant Cell Physiol 41:684–691

    Article  PubMed  CAS  Google Scholar 

  • Hatzack F, HuBel F, Zhang W, Hansen PE, Rasmussen SK (2001) Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR. Biochem J 354:473–480

    Article  PubMed  CAS  Google Scholar 

  • Hegeman CE, Good LL, Grabau EA (2001) Expression of D-myo-Inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol 125:1941–1948

    Article  PubMed  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JV, Knox RB, Pyliotis NA (1971) The structure and composition of aleurone grains in the barley aleurone layer. Planta 101:189–209

    Article  CAS  Google Scholar 

  • Johnson MD (1994) The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC5.5.1.4). Plant Physiol 105:1023–1024

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Sussex IM (1995) 1-l-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiol 107:613–619

    PubMed  CAS  Google Scholar 

  • Keller R, Brearley CA, Trethewey RN, Müller-Röber B (1998) Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J 16:403–410

    Article  CAS  Google Scholar 

  • Larson SR, Raboy V (1999) Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: correspondence with a low phytic acid mutation. Theor Appl Genet 99:27–36

    Article  CAS  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146

    Article  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    CAS  Google Scholar 

  • Loewus FA, Murthy PPN (2000) Myo-inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Ma F, Cholewa E, Mohamed T, Peterson CA, Gijzen M (2004) Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann Bot 94:213–228

    Article  PubMed  Google Scholar 

  • Meinke DW, Chen J, Beachy RN (1981) Expression of storage-protein genes during soybean seed development. Planta 153:130–139

    Article  CAS  Google Scholar 

  • O’Dell BL, de Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–721

    Article  CAS  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Raboy V, Dickinson DB (1987) The timing and rate of phytic acid accumulation in developing soybean seeds. Plant Physiol 85:841–844

    PubMed  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2.1. Plant Physiol 124:355–368

    Article  PubMed  CAS  Google Scholar 

  • Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158:489–497

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sandberg A-S, Ahderinne R (1986) HPLC method for determination of inositol tri, tetra-, penta-, and hexaphosphates in foods and intestinal contents. J Food Sci 51:547–550

    Article  CAS  Google Scholar 

  • Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl DE, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Fleming AJ (1993) A plant gene with homology to d-myo-inositol-3-phosphate synthase is rapidly and spatially upregulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J 4:279–293

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  PubMed  CAS  Google Scholar 

  • Tischner T, Allphin L, Chase K, Orf JH, Lark KG (2003) Genetics of seed abortion and reproductive traits in soybean. Crop Sci 43:464–473

    CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Wilcox J, Premachandra G, Yound K, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Roger N. Beachy (Donald Danforth Plant Science Center) for his critical reading of the manuscript. A.C.S.N. was supported by a fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. L. Aragão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, A.C.S., Vianna, G.R., Cuneo, F. et al. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224, 125–132 (2006). https://doi.org/10.1007/s00425-005-0201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0201-0

Keywords

Navigation