Skip to main content

Advertisement

Log in

Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes

Alveolar-capillary membrane conductance in type 1 diabetes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Lung diffusing capacity (DLCO) is influenced by alveolar-capillary membrane conductance (D M) and pulmonary capillary blood volume (V C), both of which can be impaired in sedentary type 1 diabetes mellitus (T1DM) subjects due to hyperglycemia. We sought to determine if T1DM, and glycemic control, affected DLNO, DLCO, D M, V C and SaO2 during maximal exercise in aerobically fit T1DM subjects. We recruited 12 T1DM subjects and 18 non-diabetic subjects measuring DLNO, DLCO, D M, and V C along with SaO2 and cardiac output (Q) at peak exercise. The T1DM subjects had significantly lower DLCO/Q and D M/Q with no difference in Q, DLNO, DLCO, D M, or V C (DLCO/Q = 2.1 ± 0.4 vs. 1.7 ± 0.3, D M/Q = 2.8 ± 0.6 vs. 2.4 ± 0.5, non-diabetic and T1DM, p < 0.05). In addition, when considering all subjects there was a relationship between DLCO/Q and SaO2 at peak exercise (r = 0.46, p = 0.01). Within the T1DM group, the optimal glycemic control group (HbA1c <7%, n = 6) had higher DLNO, DLCO, and D M/Q than the poor glycemic control subjects (HbA1c ≥7%, n = 6) at peak exercise (DLCO = 38.3 ± 8.0 vs. 28.5 ± 6.9 ml/min/mmHg, DLNO = 120.3 ± 24.3 vs. 89.1 ± 21.0 ml/min/mmHg, D M/Q = 3.8 ± 0.8 vs. 2.7 ± 0.2, optimal vs. poor control, p < 0.05). There was a negative correlation between HbA1c with DLCO, D M and D M/Q at peak exercise (DLCO: r = −0.70, p = 0.01; D M: r = −0.70, p = 0.01; D M/Q: r = −0.68, p = 0.02). These results demonstrate that there is a reduction in lung diffusing capacity in aerobically fit athletes with T1DM at peak exercise, but suggests that maintaining near-normoglycemia potentially averts lung diffusion impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HbA1c:

Glycosylated hemoglobin

DLCO:

Diffusion of the lung for carbon monoxide

DLNO:

Diffusion of the lung for nitric oxide

D M :

Alveolar-capillary membrane conductance

V C :

Pulmonary capillary blood volume

Q:

Cardiac output

DLCO/Q:

DLCO corrected for Q

DM/Q:

DM corrected for Q

SaO2 :

Peripheral oxygen saturation

MTT:

Mean transit time

FVC:

Forced vital capacity

FEF25–75 :

Forced expiratory flow at 27–75% of forced vital capacity

FEF50 :

Expiratory flow at 50% of forced vital capacity

References

  • Asanuma Y, Fujiya S, Ide H, Agishi Y (1985) Characteristics of pulmonary function in patients with diabetes mellitus. Diabetes Res Clin Pract 1:95–101

    Article  CAS  PubMed  Google Scholar 

  • Bass H (1973) The flow volume loop: normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 63:171–176

    Article  CAS  PubMed  Google Scholar 

  • Beck KC, Hyatt RE, Mpougas P, Scanlon PD (1999) Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. J Appl Physiol 86:1388–1395

    Article  CAS  PubMed  Google Scholar 

  • Bell D, Collier A, Matthews DM, Cooksey EJ, McHardy GJ, Clarke BF (1988) Are reduced lung volumes in IDDM due to defect in connective tissue? Diabetes 37:829–831

    Article  CAS  PubMed  Google Scholar 

  • Benbassat CA, Stern E, Kramer M, Lebzelter J, Blum I, Fink G (2001) Pulmonary function in patients with diabetes mellitus. Am J Med Sci 322:127–132

    Article  CAS  PubMed  Google Scholar 

  • Borg GAV (1982) A category scale with ratio properties for intermodal and interindividual comparisons. In: Geissler H, Pezold P (eds) Psychophysial judgement and the process of perception. Veb Deutsche Verlag Wissen Schaften, Berlin, pp 25–34

    Google Scholar 

  • Borland CD, Higenbottam TW (1989) A simultaneous single breath measurement of pulmonary diffusing capacity with nitric oxide and carbon monoxide. Eur Respir J 2(1):56–63

    CAS  PubMed  Google Scholar 

  • Borland C, Mist B, Zammit M, Vuylsteke A (2001) Steady-state measurement of NO and CO lung diffusing capacity on moderate exercise in men. J Appl Physiol 90(2):538–544

    Article  CAS  PubMed  Google Scholar 

  • Britton J (1988) Is the carbon monoxide transfer factor diminished in the presence of diabetic retinopathy in patients with insulin-dependent diabetes mellitus? Eur Respir J 1:403–406

    CAS  PubMed  Google Scholar 

  • Chase HP, Jackson WE, Hoops SL, Cockerham RS, Archer PG, O’Brien D (1989) Glucose control and the renal and retinal complications of insulin-dependent diabetes. JAMA 261:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Ceridon ML, Beck KC, Olson TP, Bilezikian JA, Johnson BD (2010) Calculating alveolar capillary conductance and pulmonary capillary blood volume: comparing the multiple- and single-inspired oxygen tension methods. J Appl Physiol 109(3):643–653

    Article  PubMed  Google Scholar 

  • Cohen J (1969) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cooper BG, Taylor R, Alberti KG, Gibson GJ (1990) Lung function in patients with diabetes mellitus. Respir Med 84:235–239

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175

    CAS  PubMed  Google Scholar 

  • Dressel H, Filser L, Fischer R, Marten K, Muller-Lisse U, de la Motte D, et al. (2009) Lung diffusing capacity for nitric oxide and carbon monoxide in relation to morphological changes as assessed by computed tomography in patients with cystic fibrosis. BMC Pulm Med 9:30

    Article  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  • Forster RE (1957) Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol Rev 37:391–452

    CAS  PubMed  Google Scholar 

  • Fuso L, Cotroneo P, Basso S, De Rosa M, Manto A, Ghirlanda G, Pistelli R (1996) Postural variations of pulmonary diffusing capacity in insulin-dependent diabetes mellitus. Chest 110:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Galy O, Le Gallais D, Hue O, Boussana A, Prefaut C (2005) Is exercise-induced arterial hypoxemia in triathletes dependent on exercise modality? Int J Sports Med 26:719–726

    Article  CAS  PubMed  Google Scholar 

  • Galy O, Hue O, Chamari K, Boussana A, Chaouachi A, Prefaut C (2008) Influence of performance level on exercise-induced arterial hypoxemia during prolonged and successive exercise in triathletes. Int J Sports Physiol Perform 3:482–500

    PubMed  Google Scholar 

  • Gusso S, Hofman P, Lalande S, Cutfield W, Robinson E, Baldi JC (2008) Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia 51:1317–1320

    Article  CAS  PubMed  Google Scholar 

  • Hamlin CR, Kohn RR, Luschin JH (1975) Apparent accelerated aging of human collagen in diabetes mellitus. Diabetes 24:902–904

    Article  CAS  PubMed  Google Scholar 

  • Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general US population. Am J Respir Crit Care Med 159:179–187

    CAS  PubMed  Google Scholar 

  • Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129:S49–S55

    CAS  PubMed  Google Scholar 

  • Hempel A, Maasch C, Heintze U, Lindschau C, Dietz R, Luft FC, Haller H (1997) High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res 81:363–371

    CAS  PubMed  Google Scholar 

  • Hsia CC (2002) Recruitment of lung diffusing capacity: update of concept and application. Chest 122:1774–1783

    Article  PubMed  Google Scholar 

  • Hsia CC, Raskin P (2005) The diabetic lung: relevance of alveolar microangiopathy for the use of inhaled insulin. Am J Med 118:205–211

    Article  CAS  PubMed  Google Scholar 

  • Hsia CC, Herazo LF, Ramanathan M, Johnson RL Jr (1995) Cardiac output during exercise measured by acetylene rebreathing, thermodilution, and Fick techniques. J Appl Physiol 78:1612–1616

    CAS  PubMed  Google Scholar 

  • Idris I, Gray S, Donnelly R (2004) Protein kinase C-beta inhibition and diabetic microangiopathy: effects on endothelial permeability responses in vitro. Eur J Pharmacol 485:141–144

    Article  CAS  PubMed  Google Scholar 

  • Innocenti F, Fabbri A, Anichini R, Tuci S, Pettina G, Vannucci F, De Giorgio LA, Seghieri G (1994) Indications of reduced pulmonary function in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res Clin Pract 25:161–168

    Article  CAS  PubMed  Google Scholar 

  • Jensen LA, Onyskiw JE, Prasad NGN (1998) Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung J Acute Crit Care 27:387–408

    Article  CAS  Google Scholar 

  • Johnson BD, Saupe KW, Dempsey JA (1992) Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 73:874–886

    CAS  PubMed  Google Scholar 

  • Johnson BD, Beck KC, Proctor DN, Miller J, Dietz NM, Joyner MJ (2000) Cardiac output during exercise by the open circuit acetylene washin method: comparison with direct Fick. J Appl Physiol 88:1650–1658

    Article  CAS  PubMed  Google Scholar 

  • Kida K, Utsuyama M, Takizawa T, Thurlbeck WM (1983) Changes in lung morphologic features and elasticity caused by streptozotocin-induced diabetes mellitus in growing rats. Am Rev Respir Dis 128:125–131

    CAS  PubMed  Google Scholar 

  • Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1988) Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 260:2864–2871

    Article  CAS  PubMed  Google Scholar 

  • Komatsu WR, Gabbay MA, Castro ML, Saraiva GL, Chacra AR, de Barros Neto TL, Dib SA (2005) Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes 6:145–149

    Article  PubMed  Google Scholar 

  • Lange P, Parner J, Schnohr P, Jensen G (2002) Copenhagen City Heart Study: longitudinal analysis of ventilatory capacity in diabetic and nondiabetic adults. Eur Respir J 20:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Ljubic S, Metelko Z, Car N, Roglic G, Drazic Z (1998) Reduction of diffusion capacity for carbon monoxide in diabetic patients. Chest 114:1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, et al. (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26(4):720–735

    Article  CAS  PubMed  Google Scholar 

  • McDonald MJ, Bleichman M, Bunn HF, Noble RW (1979) Functional properties of the glycosylated minor components of human adult hemoglobin. J Biol Chem 254:702–707

    CAS  PubMed  Google Scholar 

  • Mori H, Okubo M, Okamura M, Yamane K, Kado S, Egusa G, Hiramoto T, Hara H, Yamakido M (1992) Abnormalities of pulmonary function in patients with non-insulin-dependent diabetes mellitus. Intern Med 31:189–193

    Article  CAS  PubMed  Google Scholar 

  • Niranjan V, McBrayer DG, Ramirez LC, Raskin P, Hsia CC (1997) Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus. Am J Med 103:504–513

    Article  CAS  PubMed  Google Scholar 

  • Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, Lammert M, Spinas GA (2004) The CORE Diabetes Model: projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin 20(Suppl 1):S5–S26

    Article  PubMed  Google Scholar 

  • Popov D, Hasu M, Costache G, Stern D, Simionescu M (1997) Capillary and aortic endothelia interact in situ with nonenzymatically glycated albumin and develop specific alterations in early experimental diabetes. Acta Diabetol 34:285–293

    Article  CAS  PubMed  Google Scholar 

  • Ramirez LC, Dal Nogare A, Hsia C, Arauz C, Butt I, Strowig SM, Schnurr-Breen L, Raskin P (1991) Relationship between diabetes control and pulmonary function in insulin-dependent diabetes mellitus. Am J Med 91:371–376

    Article  CAS  PubMed  Google Scholar 

  • Reichard P, Berglund B, Britz A, Cars I, Nilsson BY, Rosenqvist U (1991) Intensified conventional insulin treatment retards the microvascular complications of insulin-dependent diabetes mellitus (IDDM): the Stockholm Diabetes Intervention Study (SDIS) after 5 years. J Intern Med 230:101–108

    Article  CAS  PubMed  Google Scholar 

  • Roughton FJ, Forster RE (1957) Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol 11:290–302

    CAS  PubMed  Google Scholar 

  • Sandler M, Bunn AE, Stewart RI (1986) Pulmonary function in young insulin-dependent diabetic subjects. Chest 90:670–675

    Article  CAS  PubMed  Google Scholar 

  • Sandler M, Bunn AE, Stewart RI (1987) Cross-section study of pulmonary function in patients with insulin-dependent diabetes mellitus. Am Rev Respir Dis 135:223–229

    CAS  PubMed  Google Scholar 

  • Schnack C, Festa A, Schwarzmaier-D’Assie A, Haber P, Schernthaner G (1996) Pulmonary dysfunction in type 1 diabetes in relation to metabolic long-term control and to incipient diabetic nephropathy. Nephron 74:395–400

    Article  CAS  PubMed  Google Scholar 

  • Snyder EM, Johnson BD, Beck KC (2005) An open-circuit method for determining lung diffusing capacity during exercise: comparison to rebreathe. J Appl Physiol 99:1985–1991

    Article  PubMed  Google Scholar 

  • Snyder EM, Beck KC, Dietz NM, Eisenach JH, Joyner MJ, Turner ST, Johnson BD (2006a) Arg16Gly polymorphism of the {beta}2-adrenergic receptor is associated with differences in cardiovascular function at rest and during exercise in humans. J Physiol 571:121–130

    Article  CAS  PubMed  Google Scholar 

  • Snyder EM, Beck KC, Dietz NM, Joyner MJ, Turner ST, Johnson BD (2006b) Influence of {beta}2-adrenergic receptor genotype on airway function during exercise in healthy adults. Chest 129:762–770

    Article  CAS  PubMed  Google Scholar 

  • Snyder EM, Hulsebus ML, Turner ST, Joyner MJ, Johnson BD (2006c) Genotype related differences in beta2 adrenergic receptor density and cardiac function. Med Sci Sports Exerc 38:882–886

    Article  CAS  PubMed  Google Scholar 

  • Snyder EM, Beck KC, Turner ST, Hoffman EA, Joyner MJ, Johnson BD (2007) Genetic variation of the {beta}2 adrenergic receptor is associated with differences in lung fluid accumulation in humans. J Appl Physiol 102:2172–2178

    Google Scholar 

  • Snyder EM, Olson TP, Johnson BD, Frantz RP (2008) Influence of sildenafil on lung diffusion during exposure to acute hypoxia at rest and during exercise in healthy humans. Eur J Appl Physiol 103:421–430

    Article  PubMed  Google Scholar 

  • Sternberg M, Cohen-Forterre L, Peyroux J (1985) Connective tissue in diabetes mellitus: biochemical alterations of the intercellular matrix with special reference to proteoglycans, collagens and basement membranes. Diabete Metab 11:27–50

    CAS  PubMed  Google Scholar 

  • Strojek K, Ziora D, Sroczynski JW, Oklek K (1992) Pulmonary complications of type 1 (insulin-dependent) diabetic patients. Diabetologia 35:1173–1176

    Article  CAS  PubMed  Google Scholar 

  • Tamhane RM, Johnson RL Jr, Hsia CC (2001) Pulmonary membrane diffusing capacity and capillary blood volume measured during exercise from nitric oxide uptake. Chest 120:1850–1856

    Article  CAS  PubMed  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  • Villa MP, Montesano M, Barreto M, Pagani J, Stegagno M, Multari G, Ronchetti R (2004) Diffusing capacity for carbon monoxide in children with type 1 diabetes. Diabetologia 47:1931–1935

    Article  CAS  PubMed  Google Scholar 

  • Vracko R, Thorning D, Huang TW (1979) Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am Rev Respir Dis 120:973–983

    CAS  PubMed  Google Scholar 

  • Wagner PD (1982) Influence of mixed venous PO2 on diffusion of O2 across the pulmonary blood:gas barrier. Clin Physiol 2:105–115

    Article  CAS  PubMed  Google Scholar 

  • Weir DC, Jennings PE, Hendy MS, Barnett AH, Burge PS (1988) Transfer factor for carbon monoxide in patients with diabetes with and without microangiopathy. Thorax 43:725–726

    Article  CAS  PubMed  Google Scholar 

  • West JB (1990) Respiratory physiology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Weynand B, Jonckheere A, Frans A, Rahier J (1999) Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration 66:14–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Snyder.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheatley, C.M., Baldi, J.C., Cassuto, N.A. et al. Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes. Eur J Appl Physiol 111, 567–578 (2011). https://doi.org/10.1007/s00421-010-1663-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1663-8

Keywords

Navigation