Skip to main content

Advertisement

Log in

Inhibition of cell proliferation and migration after HTRA1 knockdown in retinal pigment epithelial cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the role of HtrA serine peptidase 1 (HTRA1) in the proliferation and migration of cells of the human retinal pigment epithelial cell line ARPE-19, and the possible mechanisms involved.

Methods

ARPE-19 cells were transduced by a recombinant lentiviral vector carrying HTRA1-shRNA to knockdown HTRA1 expression. Subsequent HTRA1 gene and HTRA1 protein levels in these cells and control cells were detected by quantitative real-time PCR and Western blot, respectively. Changes in cell proliferation and migration associated with the inhibition of HTRA1 expression were assessed, as well as changes in the mRNA levels of transforming growth factor beta 1 (TGFB1), bone morphogenetic protein 4 (BMP4), and bone morphogenetic protein 2 (BMP2).

Results

The recombinant lentivirus carrying HTRA1-shRNA was successfully generated, as evidenced by reduced levels of HTRA1 mRNA and HTRA1 protein in ARPE-19 cells. The knockdown of HTRA1 in ARPE-19 cells was associated with reduced cellular proliferation and migration, and increased mRNA levels of TGF-β1, BMP4, and BMP2.

Conclusions

Silence of the HTRA1 gene was associated with significantly higher levels of TGF-β1, BMP4, and BMP2 mRNA and reduction in the proliferation and migration of ARPE-19 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bandello F, Lafuma A, Berdeaux G (2007) Public health impact of neovascular age-related macular degeneration treatments extrapolated from visual acuity. Invest Ophthalmol Vis Sci 48(1):96–103

    Article  PubMed  Google Scholar 

  2. Bird AC (2003) The Bowman lecture. Towards an understanding of age-related macular disease. Eye (Lond) 17(4):457–466

    Article  CAS  Google Scholar 

  3. Xu L, Wang Y, Li Y, Wang Y, Cui T, Li J, Jonas JB (2006) Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology 113(7):1134 e1–11

  4. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  5. Sonoda S, Sreekumar PG, Kase S, Spee C, Ryan SJ, Kannan R, Hinton DR (2009) Attainment of polarity promotes growth factor secretion by retinal pigment epithelial cells: relevance to age-related macular degeneration. Aging (Albany NY) 2(1):28–42

    Google Scholar 

  6. Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50(2):926–935

    Article  PubMed  Google Scholar 

  7. Seddon JM, Chen CA (2004) The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 44(4):17–39

    Article  PubMed  Google Scholar 

  8. Montezuma SR, Sobrin L, Seddon JM (2007) Review of genetics in age related macular degeneration. Semin Ophthalmol 22(4):229–240

    Article  PubMed  Google Scholar 

  9. Rakic JM (2006) [Multifactorial influences on age-related macular degeneration]. Bull Soc Belge Ophtalmol (301):9–11

  10. Luo L, Harmon J, Yang X, Chen H, Patel S, Mineau G, Yang Z, Constantine R, Buehler J, Kaminoh Y, Ma X, Wong TY, Zhang M, Zhang K (2008) Familial aggregation of age-related macular degeneration in the Utah population. Vision Res 48(3):494–500

    Article  PubMed  Google Scholar 

  11. Seddon JM, Cote J, Page WF, Aggen SH, Neale MC (2005) The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol 123(3):321–327

    Article  PubMed  Google Scholar 

  12. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 77(3):389–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fisher SA, Abecasis GR, Yashar BM, Zareparsi S, Swaroop A, Iyengar SK, Klein BE, Klein R, Lee KE, Majewski J, Schultz DW, Klein ML, Seddon JM, Santangelo SL, Weeks DE, Conley YP, Mah TS, Schmidt S, Haines JL, Pericak-Vance MA, Gorin MB, Schulz HL, Pardi F, Lewis CM, Weber BH (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 14(15):2257–2264

    Article  CAS  PubMed  Google Scholar 

  14. Wang G (2014) Chromosome 10q26 locus and age-related macular degeneration: a progress update. Exp Eye Res 119:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Launay S, Maubert E, Lebeurrier N, Tennstaedt A, Campioni M, Docagne F, Gabriel C, Dauphinot L, Potier MC, Ehrmann M, Baldi A, Vivien D (2008) HtrA1-dependent proteolysis of TGF-beta controls both neuronal maturation and developmental survival. Cell Death Differ 15(9):1408–1416

    Article  CAS  PubMed  Google Scholar 

  16. Karagiannis TC, El-Osta A (2005) RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 12(10):787–795

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13(3):484–493

    Article  CAS  PubMed  Google Scholar 

  18. De Luca A, De Falco M, Severino A, Campioni M, Santini D, Baldi F, Paggi MG, Baldi A (2003) Distribution of the serine protease HtrA1 in normal human tissues. J Histochem Cytochem 51(10):1279–1284

    Article  PubMed  Google Scholar 

  19. Valori CF, Ning K, Wyles M, Azzouz M (2008) Development and applications of non-HIV-based lentiviral vectors in neurological disorders. Curr Gene Ther 8(6):406–418

    Article  CAS  PubMed  Google Scholar 

  20. Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M (2006) The role of human HtrA1 in arthritic disease. J Biol Chem 281(10):6124–6129

    Article  CAS  PubMed  Google Scholar 

  21. Baldi A, De Luca A, Morini M, Battista T, Felsani A, Baldi F, Catricala C, Amantea A, Noonan DM, Albini A, Natali PG, Lombardi D, Paggi MG (2002) The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 21(43):6684–6688

    Article  CAS  PubMed  Google Scholar 

  22. Chien J, Staub J, Hu SI, Erickson-Johnson MR, Couch FJ, Smith DI, Crowl RM, Kaufmann SH, Shridhar V (2004) A candidate tumor suppressor HtrA1 is down regulated in ovarian cancer. Oncogene 23(8):1636–1644

    Article  CAS  PubMed  Google Scholar 

  23. Chien J, Ota T, Aletti G, Shridhar R, Boccellino M, Quagliuolo L, Baldi A, Shridhar V (2009) Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol Cell Biol 29(15):4177–4187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chien J, Campioni M, Shridhar V, Baldi A (2009) HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets 9(4):451–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M, Kawaichi M (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131(5):1041–1053

    Article  CAS  PubMed  Google Scholar 

  26. Hill JJ, Tremblay TL, Cantin C, O’Connor-McCourt M, Kelly JF, Lenferink AE (2009) Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-beta induced epithelial to mesenchymal transition. Proteome Sci 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  27. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358

    Article  CAS  PubMed  Google Scholar 

  28. Wang N, Eckert KA, Zomorrodi AR, Xin P, Pan W, Shearer DA, Weisz J, Maranus CD, Clawson GA (2012) Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways. PLoS One 7(6):e39446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. An E, Sen S, Park SK, Gordish-Dressman H, Hathout Y (2010) Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome. Invest Ophthalmol Vis Sci 51(7):3379–3386

    Article  PubMed Central  PubMed  Google Scholar 

  30. Supanji SM, Hasan MZ, Kawaichi M, Oka C (2013) HtrA1 is induced by oxidative stress and enhances cell senescence through p38 MAPK pathway. Exp Eye Res 112:79–92

    Article  CAS  PubMed  Google Scholar 

  31. Jones A, Kumar S, Zhang N, Tong Z, Yang JH, Watt C, Anderson J, Amrita FH, McCloskey M, Luo L, Yang Z, Ambati B, Marc R, Oka C, Zhang K, Fu Y (2011) Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc Natl Acad Sci U S A 108(35):14578–14583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nakayama M, Iejima D, Akahori M, Kamei J, Goto A, Iwata T (2014) Overexpression of HtrA1 and exposure to mainstream cigarette smoke leads to choroidal neovascularization and subretinal deposits in aged mice. Invest Ophthalmol Vis Sci 55(10):6514–6523

    Article  PubMed  Google Scholar 

  33. Vierkotten S, Muether PS, Fauser S (2011) Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch’s membrane via cleavage of extracellular matrix components. PLoS One 6(8):e22959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang G, Dubovy SR, Kovach JL, Schwartz SG, Agarwal A, Scott WK, Haines JL, Pericak-Vance MA (2013) Variants at chromosome 10q26 locus and the expression of HTRA1 in the retina. Exp Eye Res 112:102–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang YW, Liou NH, Cherng JH, Chang SJ, Ma KH, Fu E, Liu JC, Dai NT (2014) siRNA-targeting transforming growth factor-beta type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue. J Invest Dermatol 134(7):2016–2025

    Article  CAS  PubMed  Google Scholar 

  36. Kretova M, Sabova L, Hodny Z, Bartek J, Kollarovic G, Nelson BD, Hubackova S, Luciakova K (2014) TGF-beta/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence. Cell Signal 26(12):2903–2911

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China Grant 81070734, the Beijing Education Commission Grant KZ201110025028, and the Beijing Municipal Health Bureau Grant 2009208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueting Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Ma, K., Xu, J. et al. Inhibition of cell proliferation and migration after HTRA1 knockdown in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 253, 565–572 (2015). https://doi.org/10.1007/s00417-014-2901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2901-2

Keywords

Navigation