Skip to main content

Advertisement

Log in

Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the effects of gene knockdown by RNAi and to identify new targets for topical RNAi therapeutics. We evaluated the use of keratinocytes derived from psoriatic plaques and normal human keratinocytes (NHKs). To induce a psoriatic phenotype in NHKs, combinations of pro-inflammatory cytokines (IL-1α, IL-17A, IL-6 and TNF-α) were tested. The model based on NHK met our needs of a reliable and predictive preclinical model, and this model was further selected for gene expression analyses, comprising a panel of 55 psoriasis-associated genes and five micro-RNAs (miRNAs). Gene silencing studies were conducted by using small interfering RNAs (siRNAs) and miRNA inhibitors directed against potential target genes such as CAMP and DEFB4 and miRNAs such as miR-203. We describe a robust and highly reproducible in vitro psoriasis model that recapitulates expression of a large panel of genes and miRNAs relevant to the pathogenesis of psoriasis. Furthermore, we show that our model is a powerful first step model system for testing and screening RNAi-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amigo M, Schalkwijk J, Olthuis D, De Rosa S, Paya M, Terencio MC, Lamme E (2006) Identification of avarol derivatives as potential antipsoriatic drugs using an in vitro model for keratinocyte growth and differentiation. Life Sci 79(25):2395–2404

    Article  PubMed  CAS  Google Scholar 

  2. Bando M, Hiroshima Y, Kataoka M, Shinohara Y, Herzberg MC, Ross KF, Nagata T, Kido J (2007) Interleukin-1alpha regulates antimicrobial peptide expression in human keratinocytes. Immunol Cell Biol 85(7):532–537

    Article  PubMed  CAS  Google Scholar 

  3. Banno T, Gazel A, Blumenberg M (2004) Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem 279(31):32633–32642

    Article  PubMed  CAS  Google Scholar 

  4. Bernerd F, Magnaldo T, Darmon M (1992) Delayed onset of epidermal differentiation in psoriasis. J Invest Dermatol 98(6):902–910

    Article  PubMed  CAS  Google Scholar 

  5. Bigler J, Rand HA, Kerkof K, Timour M, Russell CB (2013) Cross-study homogeneity of psoriasis gene expression in skin across a large expression range. PLoS One 8(1):e52242

    Article  PubMed  CAS  Google Scholar 

  6. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  PubMed  CAS  Google Scholar 

  7. Capon F, Burden AD, Trembath RC, Barker JN (2012) Psoriasis and other complex trait dermatoses: from Loci to functional pathways. J Invest Dermatol 132(3 Pt 2):915–922. doi:10.1038/jid.2011.395

    Article  PubMed  CAS  Google Scholar 

  8. Chiricozzi A, Guttman-Yassky E, Suarez-Farinas M, Nograles KE, Tian S, Cardinale I, Chimenti S, Krueger JG (2011) Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 131(3):677–687

    Article  PubMed  CAS  Google Scholar 

  9. Coimbra S, Figueiredo A, Castro E, Rocha-Pereira P, Santos-Silva A (2012) The roles of cells and cytokines in the pathogenesis of psoriasis. Int J Dermatol 51(4):389–395 quiz 395-388

    Article  PubMed  CAS  Google Scholar 

  10. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340. doi:10.1038/nrg2968

    Article  PubMed  CAS  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  PubMed  CAS  Google Scholar 

  12. Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67(5):2561–2566

    PubMed  CAS  Google Scholar 

  13. Geusens B, Sanders N, Prow T, Van Gele M, Lambert J (2009) Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv 6(12):1333–1349. doi:10.1517/17425240903304032

    Article  PubMed  CAS  Google Scholar 

  14. Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Van Gele M, Lambert J (2011) Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 43(4):199–211

    Article  PubMed  CAS  Google Scholar 

  15. Girolomoni G, Mrowietz U, Paul C (2012) Psoriasis: rationale for targeting interleukin-17. Br J Dermatol 167(4):717–724

    Article  PubMed  CAS  Google Scholar 

  16. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, Kupper TS, Sehgal PB, Gottlieb AB (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86(16):6367–6371

    Article  PubMed  CAS  Google Scholar 

  17. Gudjonsson JE, Ding J, Johnston A, Tejasvi T, Guzman AM, Nair RP, Voorhees JJ, Abecasis GR, Elder JT (2010) Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J Invest Dermatol 130(7):1829–1840

    Article  PubMed  CAS  Google Scholar 

  18. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, Khatcherian A, Novitskaya I, Carucci JA, Bergman R, Krueger JG (2008) Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol 181(10):7420–7427

    PubMed  CAS  Google Scholar 

  19. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40(1):23–25

    Article  PubMed  CAS  Google Scholar 

  20. Ichihara A, Jinnin M, Yamane K, Fujisawa A, Sakai K, Masuguchi S, Fukushima S, Maruo K, Ihn H (2011) microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br J Dermatol 165(5):1003–1010

    Article  PubMed  CAS  Google Scholar 

  21. Iizuka H, Takahashi H, Honma M, Ishida-Yamamoto A (2004) Unique keratinization process in psoriasis: late differentiation markers are abolished because of the premature cell death. J Dermatol 31(4):271–276

    PubMed  Google Scholar 

  22. Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, Zhang W, Bowcock AM (2011) Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 20(20):4025–4040. doi:10.1093/hmg/ddr331

    Article  PubMed  CAS  Google Scholar 

  23. Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4(3):211–222

    Article  PubMed  CAS  Google Scholar 

  24. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  PubMed  CAS  Google Scholar 

  25. Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN (1995) Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol 133(4):501–511

    Article  PubMed  CAS  Google Scholar 

  26. Lerman G, Avivi C, Mardoukh C, Barzilai A, Tessone A, Gradus B, Pavlotsky F, Barshack I, Polak-Charcon S, Orenstein A, Hornstein E, Sidi Y, Avni D (2011) MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS One 6(6):e20916

    Article  PubMed  CAS  Google Scholar 

  27. Mee JB, Johnson CM, Morar N, Burslem F, Groves RW (2007) The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: dominance of innate immune responses in psoriasis. Am J Pathol 171(1):32–42

    Article  PubMed  CAS  Google Scholar 

  28. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. The New England journal of medicine 361(5):496–509. doi:10.1056/NEJMra0804595

    Article  PubMed  CAS  Google Scholar 

  29. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson KC, White TR, Pensabene C, Coats I, Novitskaya I, Lowes MA, Krueger JG (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 159(5):1092–1102

    PubMed  CAS  Google Scholar 

  30. Oka A, Mabuchi T, Ozawa A, Inoko H (2012) Current understanding of human genetics and genetic analysis of psoriasis. J Dermatol 39(3):231–241. doi:10.1111/j.1346-8138.2012.01504.x

    Article  PubMed  CAS  Google Scholar 

  31. Pol A, Bergers M, van Ruissen F, Pfundt R, Schalkwijk J (2002) A simple technique for high-throughput screening of drugs that modulate normal and psoriasis-like differentiation in cultured human keratinocytes. Skin Pharmacol Appl Skin Physiol 15(4):252–261

    Article  PubMed  Google Scholar 

  32. Pol A, van Ruissen F, Schalkwijk J (2002) Development of a keratinocyte-based screening model for antipsoriatic drugs using green fluorescent protein under the control of an endogenous promoter. J Biomol Screen 7(4):325–332

    Article  PubMed  CAS  Google Scholar 

  33. Reich K, Bewley A (2011) What is new in topical therapy for psoriasis? J Eur Acad Dermatol Venereol 25 Suppl 4:15–20

    Article  PubMed  CAS  Google Scholar 

  34. Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Stahle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2(7):e610

    Article  PubMed  Google Scholar 

  35. Suarez-Farinas M, Lowes MA, Zaba LC, Krueger JG (2010) Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One 5(4):e10247

    Article  PubMed  Google Scholar 

  36. Svensson L, Ropke MA, Norsgaard H (2012) Psoriasis drug discovery: methods for evaluation of potential drug candidates. Expert Opin Drug Discov 7(1):49–61

    Article  PubMed  CAS  Google Scholar 

  37. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486

    Article  PubMed  CAS  Google Scholar 

  38. Tian S, Krueger JG, Li K, Jabbari A, Brodmerkel C, Lowes MA, Suarez-Farinas M (2012) Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One 7(9):e44274

    Article  PubMed  CAS  Google Scholar 

  39. Tjabringa G, Bergers M, van Rens D, de Boer R, Lamme E, Schalkwijk J (2008) Development and validation of human psoriatic skin equivalents. Am J Pathol 173(3):815–823

    Article  PubMed  Google Scholar 

  40. Van Ruissen F, de Jongh GJ, Zeeuwen PL, Van Erp PE, Madsen P, Schalkwijk J (1996) Induction of normal and psoriatic phenotypes in submerged keratinocyte cultures. J Cell Physiol 168(2):442–452

    Article  PubMed  Google Scholar 

  41. Vandesompele J, De Paepe A, Speleman F (2002) Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal Biochem 303(1):95–98

    Article  PubMed  CAS  Google Scholar 

  42. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  Google Scholar 

  43. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal MalefytR (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8(9):950–957

    Article  PubMed  CAS  Google Scholar 

  44. Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, Kemeny L, Stahle M, Sonkoly E, Pivarcsi A (2011) MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 131(7):1521–1529

    Article  PubMed  CAS  Google Scholar 

  45. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229

    Article  PubMed  CAS  Google Scholar 

  46. Zeeuwen PL, de Jongh GJ, Rodijk-Olthuis D, Kamsteeg M, Verhoosel RM, van Rossum MM, Hiemstra PS, Schalkwijk J (2008) Genetically programmed differences in epidermal host defense between psoriasis and atopic dermatitis patients. PLoS One 3(6):e2301

    Article  PubMed  Google Scholar 

  47. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100(17):9779–9784

    Article  PubMed  CAS  Google Scholar 

  48. Zibert JR, Lovendorf MB, Litman T, Olsen J, Kaczkowski B, Skov L (2010) MicroRNAs and potential target interactions in psoriasis. J Dermatol Sci 58(3):177–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martine De Mil for help with cell culture, and Marie-Chantal Herteleer and Els Van Maelsaeke for technical assistance. Dr. S. Bracke is funded by an IWT grant (091208) (‘Flemish government agency for Innovation by Science and Technology’).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bracke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracke, S., Desmet, E., Guerrero-Aspizua, S. et al. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model. Arch Dermatol Res 305, 501–512 (2013). https://doi.org/10.1007/s00403-013-1379-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1379-9

Keywords

Navigation