Skip to main content
Log in

Alopecia Areata: Current Treatments and New Directions

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Alopecia areata is an autoimmune hair loss disease that is non-scarring and is characterized by chronic inflammation at the hair follicle level. Clinically, patients’ presentation varies from patchy, circumscribed scalp involvement to total body and scalp hair loss. Current management is guided by the degree of scalp and body involvement, with topical and intralesional steroid injections as primarily first-line for mild cases and broad immunosuppressants as the mainstay for more severe cases. Until recently, the limited number of blinded, randomized, placebo-controlled clinical trials for this disease had made establishing an evidence-based treatment paradigm challenging. However, growing insights into the pathogenesis of alopecia areata through blood and tissue analysis of human lesions have identified several promising targets for therapy. T-helper (Th) 1/interferon skewing has traditionally been described as the driver of disease; however, recent investigations suggest activation of additional immune mediators, including the Th2 pathway, interleukin (IL)-9, IL-23, and IL-32, as contributors to alopecia areata pathogenesis. The landscape of alopecia areata treatment has the potential to be transformed, as several novel targeted drugs are currently undergoing clinical trials. Given the recent US FDA approval of baricitinib and ritlecitinib, Janus kinase (JAK) inhibitors are a promising drug class for treating severe alopecia areata cases. This article will review the efficacy, safety, and tolerability of current treatments for alopecia areata, and will provide an overview of the emerging therapies that are leading the revolution in the management of this challenging disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Simakou T, et al. Alopecia areata: a multifactorial autoimmune condition. J Autoimmun. 2019;98:74–85.

    Article  CAS  PubMed  Google Scholar 

  2. Sterkens A, Lambert J, Bervoets A. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med. 2021;21(2):215–30.

    Article  CAS  PubMed  Google Scholar 

  3. Strazzulla LC, et al. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol. 2018;78(1):1–12.

    Article  PubMed  Google Scholar 

  4. Lintzeri DA, et al. Alopecia areata—current understanding and management. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2022;20(1):59–90.

  5. Güleç AT, et al. The role of psychological factors in alopecia areata and the impact of the disease on the quality of life. Int J Dermatol. 2004;43(5):352–6.

    Article  PubMed  Google Scholar 

  6. Gupta MA, Gupta AK, Watteel GN. Stress and alopecia areata: a psychodermatologic study. Acta Derm Venereol. 1997;77(4):296–8.

    Article  CAS  PubMed  Google Scholar 

  7. Griesemer RD. Emotionally triggered disease in a dermatologic practice. Psychiatr Ann. 1978;8(8):49–56.

    Article  Google Scholar 

  8. Rodriguez TA, Duvic M. Onset of alopecia areata after Epstein–Barr virus infectious mononucleosis. J Am Acad Dermatol. 2008;59(1):137–9.

    Article  PubMed  Google Scholar 

  9. Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilhar A, Paus R, Kalish RS. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Investig. 2007;117(8):2019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olsen EA, et al. Alopecia areata investigational assessment guidelines—part II. J Am Acad Dermatol. 2004;51(3):440–7.

    Article  PubMed  Google Scholar 

  12. King B, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386(18):1687–99.

    Article  CAS  PubMed  Google Scholar 

  13. Ali E, et al. Olumniant (Baricitinib) oral tablets: an insight into FDA-approved systemic treatment for Alopecia Areata. Ann Med Surg (Lond). 2022;80: 104157.

    PubMed  Google Scholar 

  14. FDA Approves Pfizer’s LITFULO™ (Ritlecitinib) for Adults and Adolescents With Severe Alopecia Areata. 2023 [cited 22 July 2023]; https://www.businesswire.com/news/home/20230623087591/en/FDA-Approves-Pfizer’s-LITFULO™-Ritlecitinib-for-Adults-and-Adolescents-With-Severe-Alopecia-Areata. Accessed 19 July 2023.

  15. Pfizer. FDA and EMA accept regulatory submission for Pfizer’s ritlecitinib for individuals 12 years and older with alopecia areata. 2022 [cited 28 Oct 2022]. https://www.pfizer.com/news/press-release/press-release-detail/fda-and-ema-accept-regulatory-submission-pfizers. Accessed 27 Oct 2022.

  16. Paus R, Nickoloff BJ, Ito T. A ‘hairy’ privilege. Trends Immunol. 2005;26(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer KC, et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol. 2008;159(5):1077–85.

    CAS  PubMed  Google Scholar 

  18. Harries MJ, et al. Management of alopecia areata. BMJ. 2010;341: c3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito T, et al. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am J Pathol. 2004;164(2):623–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertolini M, et al. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol. 2016;175(3):531–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bertolini M, et al. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29(8):703–25.

    Article  CAS  PubMed  Google Scholar 

  22. Ito T, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Investig Dermatol. 2008;128(5):1196–206.

    Article  CAS  PubMed  Google Scholar 

  23. Gilhar A, et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J Investig Dermatol. 2013;133(3):844–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kasumagic-Halilovic E, Prohic A, Karamehic J. Serum concentrations of interferon-gamma (IFN-g) in patients with alopecia areata: correlation with clinical type and duration of the disease. Med Arh. 2010;64(4):212–4.

    PubMed  Google Scholar 

  25. Zainodini N, et al. Differential expression of CXCL1, CXCL9, CXCL10 and CXCL12 chemokines in alopecia areata. Iran J Immunol. 2013;10(1):40–6.

    CAS  PubMed  Google Scholar 

  26. Bilgic O, et al. Serum cytokine and chemokine profiles in patients with alopecia areata. J Dermatolog Treat. 2016;27(3):260–3.

    Article  CAS  PubMed  Google Scholar 

  27. Guo H, et al. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol. 2015;11(12):1335–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bertolini M, et al. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS ONE. 2014;9(5): e94260.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peters EM, et al. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol. 2007;171(6):1872–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: the key to alopecia areata management. J Investig Dermatol Symp Proc. 2018;19(1):S12-s17.

    Article  PubMed  Google Scholar 

  31. Perret C, Wiesner-Menzel L, Happle R. Immunohistochemical analysis of T-cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta Derm Venereol. 1984;64(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  32. Ranki A, et al. Immunohistochemical and electron microscopic characterization of the cellular infiltrate in alopecia (areata, totalis, and universalis). J Investig Dermatol. 1984;83(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  33. McElwee KJ, et al. Alopecia areata in C3H/HeJ mice involves leukocyte-mediated root sheath disruption in advance of overt hair loss. Vet Pathol. 2003;40(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  34. Oh JW, et al. A guide to studying human hair follicle cycling in vivo. J Investig Dermatol. 2016;136(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  35. Ryan GE, Harris JE, Richmond JM. Resident memory T cells in autoimmune skin diseases. Front Immunol. 2021;12: 652191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing L, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shea JJ, et al. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72 Suppl (2):111–5.

  38. Gilhar A, et al. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol. 2019;144(6):1478–89.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, et al. Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol. 2021;61(3):403–23.

    Article  PubMed  Google Scholar 

  40. Divito SJ, Kupper TS. Inhibiting janus kinases to treat alopecia areata. Nat Med. 2014;20(9):989–90.

    Article  CAS  PubMed  Google Scholar 

  41. Kuo PT, et al. The role of CXCR3 and its chemokine ligands in skin disease and cancer. Front Med. 2018;5:271.

    Article  Google Scholar 

  42. Howell MD, Kuo FI, Smith PA. Targeting the Janus kinase family in autoimmune skin diseases. Front Immunol. 2019;10:2342.

  43. Jagielska D, et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J Investig Dermatol. 2012;132(9):2192–7.

    Article  CAS  PubMed  Google Scholar 

  44. Suárez-Fariñas M, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87.

    Article  PubMed  Google Scholar 

  45. Glickman JW, et al. An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata. Allergy. 2021;76(10):3053–65.

    Article  CAS  PubMed  Google Scholar 

  46. Attia EAS, El Shennawy D, Sefin A. Serum interleukin-4 and Total immunoglobulin E in nonatopic alopecia areata patients and HLA-DRB1 typing. Dermatol Res Pract. 2010;2010: 503587.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guttman-Yassky E, et al. Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers. J Allergy Clin Immunol. 2022;149(4):1318–28.

    Article  CAS  PubMed  Google Scholar 

  48. Guttman-Yassky E, et al. Phase 2a randomized clinical trial of dupilumab (anti-IL-4Rα) for alopecia areata patients. Allergy. 2022;77(3):897–906.

    Article  CAS  PubMed  Google Scholar 

  49. Bakry OA, et al. Total serum immunoglobulin E in patients with alopecia areata. Indian Dermatol Online J. 2014;5(2):122–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Renert-Yuval Y, et al. Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata. Allergy. 2023;78(4):1047–1059.

  51. Glickman JW, et al. Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation. J Am Acad Dermatol. 2021;84(2):370–80.

    Article  CAS  PubMed  Google Scholar 

  52. Renert-Yuval Y, Guttman-Yassky E. The changing landscape of alopecia areata: the therapeutic paradigm. Adv Ther. 2017;34(7):1594–609.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Madani S, Shapiro J. Alopecia areata update. J Am Acad Dermatol. 2000;42(4):549–66 (quiz 567–70).

    Article  CAS  PubMed  Google Scholar 

  54. Shapiro J. Alopecia areata. Update on therapy. Dermatol Clin. 1993;11(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  55. Alkhalifah A, et al. Alopecia areata update: part II. Treatment. J Am Acad Dermatol. 2010;62(2):191–202 (quiz 203–4).

    Article  CAS  PubMed  Google Scholar 

  56. Fuentes-Duculan J, et al. Biomarkers of alopecia areata disease activity and response to corticosteroid treatment. Exp Dermatol. 2016;25(4):282–6.

    Article  CAS  PubMed  Google Scholar 

  57. Abell E, Munro DD. Intralesional treatment of alopecia areata with triamcinolone acetonide by jet injector. Br J Dermatol. 1973;88(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  58. Yee BE, et al. Efficacy of different concentrations of intralesional triamcinolone acetonide for alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol. 2020;82(4):1018–21.

    Article  CAS  PubMed  Google Scholar 

  59. Laisuan W, et al. Anaphylaxis following intralesional triamcinolone acetonide (Kenacort) injection. Asia Pac Allergy. 2017;7(2):115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Piccolo A, et al. A linear forehead lesion caused by intralesional injection of triamcinolone acetonide and treated with hyaluronic acid filler: case report. Dermatol Ther. 2020;33(6): e14526.

    Article  PubMed  Google Scholar 

  61. Chang KH, Rojhirunsakool S, Goldberg LJ. Treatment of severe alopecia areata with intralesional steroid injections. J Drugs Dermatol. 2009;8(10):909–12.

    PubMed  Google Scholar 

  62. Shapiro J, Price VH. Hair regrowth. therapeutic agents. Dermatol Clin. 1998;16(2):341–56.

    Article  CAS  PubMed  Google Scholar 

  63. Kumaresan M. Intralesional steroids for alopecia areata. Int J Trichol. 2010;2(1):63–5.

    Article  CAS  Google Scholar 

  64. Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. 2000;11(6):478–83.

    Article  CAS  PubMed  Google Scholar 

  65. Kaur S, Mahajan BB, Mahajan R. Comparative evaluation of intralesional triamcinolone acetonide injection, narrow band ultraviolet B, and their combination in alopecia areata. Int J Trichol. 2015;7(4):148–55.

    Article  Google Scholar 

  66. Payne J, et al. A review of topical corticosteroid foams. J Drugs Dermatol. 2019;18(8):756–70.

    CAS  PubMed  Google Scholar 

  67. Suchonwanit P, et al. A comparison of the efficacy and tolerability of three corticosteroid treatment regimens in patients with alopecia areata. J Dermatol Treat. 2022;33(2):756–61.

    Article  CAS  Google Scholar 

  68. Molinelli E, et al. Efficacy and Safety of Topical Calcipotriol 0.005% Versus Topical Clobetasol 0.05% in the Management of Alopecia Areata: An Intrasubject Pilot Study. Dermatol Ther (Heidelb). 2020;10(3):515–21.

    Article  PubMed  Google Scholar 

  69. Alsantali A. Alopecia areata: a new treatment plan. Clin Cosmet Investig Dermatol. 2011;4:107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kuwano Y, et al. Serum chemokine profiles in patients with alopecia areata. Br J Dermatol. 2007;157(3):466–73.

    Article  CAS  PubMed  Google Scholar 

  71. Herbst V, et al. Diphenylcyclopropenone treatment of alopecia areata induces apoptosis of perifollicular lymphocytes. Eur J Dermatol. 2006;16(5):537–42.

    CAS  PubMed  Google Scholar 

  72. Happle R. Antigenic competition as a therapeutic concept for alopecia areata. Arch Dermatol Res. 1980;267(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  73. Mahasaksiri T, et al. Application of topical immunotherapy in the treatment of alopecia areata: a review and update. Drug Des Dev Ther. 2021;15:1285.

    Article  Google Scholar 

  74. Lee S, et al. Hair regrowth outcomes of contact immunotherapy for patients with alopecia areata: a systematic review and meta-analysis. JAMA Dermatol. 2018;154(10):1145–51.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tosti A, et al. Long-term results of topical immunotherapy in children with alopecia totalis or alopecia universalis. J Am Acad Dermatol. 1996;35(2 Pt 1):199–201.

    Article  CAS  PubMed  Google Scholar 

  76. Hull SM, Pepall L, Cunliffe WJ. Alopecia areata in children: response to treatment with diphencyprone. Br J Dermatol. 1991;125(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  77. Schuttelaar ML, et al. Alopecia areata in children: treatment with diphencyprone. Br J Dermatol. 1996;135(4):581–5.

    Article  CAS  PubMed  Google Scholar 

  78. Singh G, Lavanya M. Topical immunotherapy in alopecia areata. Int J Trichology. 2010;2(1):36–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Valsecchi R, et al. Pigmentation abnormalities in the course of topical immunotherapy of alopecia areata. G Ital Dermatol Venereol. 1989;124(1–2):31–2.

    CAS  PubMed  Google Scholar 

  80. Asilian A, et al. Oral pulse betamethasone, methotrexate, and combination therapy to treat severe alopecia areata: a randomized, double-blind, placebo-controlled, clinical trial. Iran J Pharm Res. 2021;20(1):267–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai VWY, et al. Cyclosporine for moderate-to-severe alopecia areata: a double-blind, randomized, placebo-controlled clinical trial of efficacy and safety. J Am Acad Dermatol. 2019;81(3):694–701.

    Article  CAS  PubMed  Google Scholar 

  82. Phan K, Ramachandran V, Sebaratnam DF. Methotrexate for alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol. 2019;80(1):120-127.e2.

    Article  CAS  PubMed  Google Scholar 

  83. Husein-ElAhmed H, Steinhoff M. Efficacy and predictive factors of cyclosporine A in alopecia areata: a systematic review with meta-analysis. J Dermatol Treat. 2022;33(3):1643–51.

    Article  CAS  Google Scholar 

  84. Shreberk-Hassidim R, et al. A systematic review of pulse steroid therapy for alopecia areata. J Am Acad Dermatol. 2016;74(2):372-374.e5.

    Article  PubMed  Google Scholar 

  85. Kruh J, Foster CS. Corticosteroid-sparing agents: conventional systemic immunosuppressants. Dev Ophthalmol. 2012;51:29–46.

    Article  CAS  PubMed  Google Scholar 

  86. Sinha A, Bagga A. Pulse steroid therapy. Indian J Pediatr. 2008;75(10):1057–66.

    Article  PubMed  Google Scholar 

  87. Senila SC, et al. Intravenous methylprednisolone pulse therapy in severe alopecia areata. Indian J Dermatol Venereol Leprol. 2015;81(1):95.

    Article  PubMed  Google Scholar 

  88. Jahn-Bassler K, et al. Sequential high- and low-dose systemic corticosteroid therapy for severe childhood alopecia areata. J Dtsch Dermatol Ges. 2017;15(1):42–7.

    Article  PubMed  Google Scholar 

  89. Wang E, Lee JS, Tang M. Current treatment strategies in pediatric alopecia areata. Indian J Dermatol. 2012;57(6):459–65.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gilhar A, Keren A, Paus R. JAK inhibitors and alopecia areata. Lancet. 2019;393(10169):318–9.

    Article  PubMed  Google Scholar 

  91. Spinelli FR, et al. JAK inhibitors: ten years after. Eur J Immunol. 2021;51(7):1615–27.

    Article  CAS  PubMed  Google Scholar 

  92. Hammarén HM, et al. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 2019;118:48–63.

    Article  PubMed  Google Scholar 

  93. Spinelli FR, Colbert RA, Gadina M. JAK1: Number one in the family; number one in inflammation? Rheumatology (Oxford). 2021;60(Suppl 2):ii3–10.

    Article  CAS  PubMed  Google Scholar 

  94. Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem. 2022;13(1):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13: 955035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Remenyi J, et al. Generation of a chemical genetic model for JAK3. Sci Rep. 2021;11(1):10093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. US FDA. FDA Approves First Systemic Treatment for Alopecia Areata. 2022 6/13/22 [cited 1 Oct 2022]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-systemic-treatment-alopecia-areata. Accessed 1 Oct 2022

  98. Phan K, Sebaratnam DF. JAK inhibitors for alopecia areata: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2019;33(5):850–6.

    Article  CAS  PubMed  Google Scholar 

  99. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234–43.

    Article  CAS  PubMed  Google Scholar 

  100. Chen Y, et al. A study on the risk of fungal infection with tofacitinib (CP-690550), a novel oral agent for rheumatoid arthritis. Sci Rep. 2017;7(1):1–9.

    Google Scholar 

  101. Lussana F, et al. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93(3):339–47.

    Article  CAS  PubMed  Google Scholar 

  102. Mori S, Ogata F, Tsunoda R. Risk of venous thromboembolism associated with Janus kinase inhibitors for rheumatoid arthritis: case presentation and literature review. Clin Rheumatol. 2021;40(11):4457–71.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Benucci M, et al. Cardiovascular safety, cancer and Jak-inhibitors: differences to be highlighted. Pharmacol Res. 2022;183: 106359.

    Article  CAS  PubMed  Google Scholar 

  104. Ytterberg SR, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.

    Article  CAS  PubMed  Google Scholar 

  105. US FDA. Janus kinase (JAK) inhibitors: drug safety communication—FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death. 2021 [cited 3 Oct 2022]. https://www.fda.gov/safety/medical-product-safety-information/janus-kinase-jak-inhibitors-drug-safety-communication-fda-requires-warnings-about-increased-risk. Accessed 3 Oct 2022.

  106. Schwartz DM, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;17(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  107. King B, et al. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study. J Am Acad Dermatol. 2021;85(4):847–53.

    Article  CAS  PubMed  Google Scholar 

  108. Ramírez-Marín HA, Tosti A. Evaluating the therapeutic potential of ritlecitinib for the treatment of alopecia areata. Drug Des Devel Ther. 2022;16:363–74.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012;366(16):1515–25.

    Article  CAS  PubMed  Google Scholar 

  110. Eisman S, Sinclair R. Ritlecitinib: an investigational drug for the treatment of moderate to severe alopecia areata. Expert Opin Investig Drugs. 2021;30(12):1169–74.

    Article  CAS  PubMed  Google Scholar 

  111. Pfizer. Pfizer Announces Positive Top-Line Results from Phase 2b/3 Trial of Ritlecitinib in Alopecia Areata. 2022 [cited 30 Oct 2022]. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-announces-positive-top-line-results-phase-2b3-trial. Accessed 29 Oct 2022.

  112. King B, et al. Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: a randomised, double-blind, multicentre, phase 2b–3 trial. Lancet. 2023;401(10387):1518–29.

    Article  CAS  PubMed  Google Scholar 

  113. CoNCERT. Concert pharmaceuticals announces presentation of CTP-543 THRIVE AA1 phase 3 data in alopecia areata during late breaking session at EADV congress. 2022 [cited 1 Nov 2022]. https://ir.concertpharma.com/news-releases/news-release-details/concert-pharmaceuticals-announces-presentation-ctp-543-thrive. Accessed 1 Nov 2022.

  114. Renert-Yuval Y, et al. Analysis of alopecia areata surveys suggests a threshold for improved patient-reported outcomes. Br J Dermatol. 2022;187(4):539–47.

    Article  PubMed  PubMed Central  Google Scholar 

  115. BusinessWire. Concert pharmaceuticals reports positive topline results for second CTP‑543 phase 3 clinical trial in alopecia areata. 2022 [cited 1 Nov 2022]. https://www.businesswire.com/news/home/20220801005238/en/Concert-Pharmaceuticals-Reports-Positive-Topline-Results-for-Second-CTP%E2%80%91543-Phase-3-Clinical-Trial-in-Alopecia-Areata. Accessed 1 Nov 2022.

  116. De Vries LCS, et al. A JAK1 selective kinase inhibitor and tofacitinib affect macrophage activation and function. Inflamm Bowel Dis. 2019;25(4):647–60.

    Article  PubMed  Google Scholar 

  117. Liu LY, et al. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol. 2017;76(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  118. Kennedy Crispin M, et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight. 2016;1(15): e89776.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jabbari A, et al. An open-label pilot study to evaluate the efficacy of tofacitinib in moderate to severe patch-type alopecia areata, totalis, and universalis. J Investig Dermatol. 2018;138(7):1539–45.

    Article  CAS  PubMed  Google Scholar 

  120. Guo L, et al. Benefit and risk profile of tofacitinib for the treatment of alopecia areata: a systemic review and meta-analysis. J Eur Acad Dermatol Venereol. 2020;34(1):192–201.

    Article  CAS  PubMed  Google Scholar 

  121. Winthrop KL, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(10):2675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Helfand C. FDA swats down Pfizer’s Xeljanz in plaque psoriasis. 2015 [cited 31 Oct 2022]. https://www.fiercepharma.com/regulatory/fda-swats-down-pfizer-s-xeljanz-plaque-psoriasis. Accessed 31 Oct 2022.

  123. Fensome A, et al. Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of (( S)-2,2-difluorocyclopropyl)((1 R,5 S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J Med Chem. 2018;61(19):8597–612.

    Article  CAS  PubMed  Google Scholar 

  124. Robinson MF, et al. Efficacy and safety of PF-06651600 (Ritlecitinib), a novel JAK3/TEC inhibitor, in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 2020;72(10):1621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. King B, et al. A phase 2a randomized, placebo-controlled study to evaluate the efficacy and safety of the oral Janus kinase inhibitors ritlecitinib and brepocitinib in alopecia areata: 24-week results. J Am Acad Dermatol. 2021;85(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  126. Peeva E, et al. Maintenance, withdrawal, and re-treatment with ritlecitinib and brepocitinib in patients with alopecia areata in a single-blind extension of a phase 2a randomized clinical trial. J Am Acad Dermatol. 2022;87(2):390–3.

    Article  PubMed  Google Scholar 

  127. Yan D, et al. The efficacy and safety of JAK inhibitors for alopecia areata: a systematic review and meta-analysis of prospective studies. Front Pharmacol. 2022;13: 950450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reistone announces positive topline phase 2 results for SHR0302, a selective JAK1 inhibitor, for treatment of patients with alopecia areata. 2022 [cited 18 Dec 2022]. https://www.prnewswire.com/news-releases/reistone-announces-positive-topline-phase-2-results-for-shr0302-a-selective-jak1-inhibitor-for-treatment-of-patients-with-alopecia-areata-301360967.html#:~:text=Reistone%20Announces%20Positive%20Topline%20Phase%202%20Results%20for,relevant%20percentage%20change%20in%20SALT%20score%20versus%20placebo. Accessed 18 Dec 2022.

  129. Seagraves B. FDA approves new treatment for people ages 12 and older with moderate-to-severe atopic dermatitis. 2022 [cited 20 Apr 2023]. https://community.aafa.org/blog/fda-approves-new-treatment-for-people-ages-12-and-older-with-moderate-to-severe-atopic-dermatitis#. Accessed 20 Apr 2023.

  130. Bourkas AN, Sibbald C. Upadacitinib for the treatment of alopecia areata and severe atopic dermatitis in a paediatric patient: a case report. SAGE Open Med Case Rep. 2022;10:2050313x221138452.

  131. Cantelli M, et al. Upadacitinib improved alopecia areata in a patient with atopic dermatitis: a case report. Dermatol Ther. 2022;35(4): e15346.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Johnston LA, Poelman SM. Upadacitinib for management of recalcitrant alopecia areata: a retrospective case series. JAAD Case Rep. 2023;35:38–42.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Flora A, Kozera E, Frew JW. Treatment of alopecia areata with the janus kinase inhibitor upadacitinib: a retrospective cohort study. J Am Acad Dermatol. 2023 2023/02/15.

  134. Cohen SB, et al. Safety profile of upadacitinib in rheumatoid arthritis: integrated analysis from the SELECT phase III clinical programme. Ann Rheum Dis. 2021;80(3):304–11.

    Article  CAS  PubMed  Google Scholar 

  135. Bayart CB, et al. Topical Janus kinase inhibitors for the treatment of pediatric alopecia areata. J Am Acad Dermatol. 2017;77(1):167–70.

    Article  PubMed  Google Scholar 

  136. Mikhaylov D, Glickman JW, Del Duca E, Nia J, Hashim P, Singer GK, et al. A phase 2a randomized vehicle-controlled multi-center study of the safety and efficacy of delgocitinib in subjects with moderate-to-severe alopecia areata. Arch Dermatol Res. 2022.

  137. Tong A. Aclaris hammered as hair loss drug flops in PhII, days after FDA took issue with Eskata ads. 2019 [cited 31 Oct 2022]. https://endpts.com/aclaris-hammered-as-hair-loss-drug-flops-in-phii-days-after-fda-took-issue-with-eskata-ads/. Accessed 31 Oct 2022.

  138. Steele L, et al. The status and outcomes of registered clinical trials for Janus kinase inhibitors in alopecia areata: are unpublished trials being overlooked? Clin Exp Dermatol. 2021;46(7):1290–2.

    Article  CAS  PubMed  Google Scholar 

  139. Le Floc’h A, et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. 2020;75(5):1188–204.

    Article  PubMed  Google Scholar 

  140. Simpson EL, Akinlade B, Ardeleanu M. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2017;376(11):1090–1.

    Article  PubMed  Google Scholar 

  141. Bachert C, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638–50.

    Article  CAS  PubMed  Google Scholar 

  142. Wenzel S, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31–44.

    Article  CAS  PubMed  Google Scholar 

  143. Renert-Yuval Y, Pavel AB, Del Duca E, Facheris P, Pagan AD, Bose S, et al. Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata. Allergy. 2022 Oct 22.

  144. FDA approves Adbry for treatment of moderate-to-severe atopic dermatitis [cited 17 Nov 2022]. https://www.pharmacytimes.com/view/fda-approves-adbry-for-treatment-of-moderate-to-severe-atopic-dermatitis. Accessed 17 Nov 2022.

  145. Kelly KA, Perche PO, Feldman SR. Therapeutic potential of tralokinumab in the treatment of atopic dermatitis: a review on the emerging clinical data. Clin Cosmet Investig Dermatol. 2022;15:1037–43.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gutiérrez A, Rodríguez-Lago I. How to optimize treatment with ustekinumab in inflammatory bowel disease: lessons learned from clinical trials and real-world data. Front Med (Lausanne). 2021;8: 640813.

    Article  PubMed  Google Scholar 

  147. Guttman-Yassky E, et al. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J Allergy Clin Immunol. 2016;137(1):301–4.

    Article  CAS  PubMed  Google Scholar 

  148. Aleisa A, et al. Response to ustekinumab in three pediatric patients with alopecia areata. Pediatr Dermatol. 2019;36(1):e44–5.

    Article  PubMed  Google Scholar 

  149. Kim SR, Liu L, and King B. No hair regrowth in three patients with alopecia universalis treated with ustekinumab. Journal of the American Academy of Dermatology. 2018;79(3):AB205.

  150. Ortolan LS, et al. IL-12/IL-23 neutralization is ineffective for alopecia areata in mice and humans. J Allergy Clin Immunol. 2019;144(6):1731-1734.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Scherl EJ, Kumar S, Warren RU. Review of the safety and efficacy of ustekinumab. Therap Adv Gastroenterol. 2010;3(5):321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Atwa MA, Youssef N, Bayoumy NM. T-helper 17 cytokines (interleukins 17, 21, 22, and 6, and tumor necrosis factor-α) in patients with alopecia areata: association with clinical type and severity. Int J Dermatol. 2016;55(6):666–72.

    Article  CAS  PubMed  Google Scholar 

  153. Avitabile S, et al. Effective squaric acid dibutylester immunotherapy is associated with a reduction of skin infiltrating T-helper (Th)1 and Th17 cells in alopecia areata patients. J Dermatol. 2015;42(1):98–9.

    Article  CAS  PubMed  Google Scholar 

  154. El-Morsy EH, et al. Serum level of interleukin-17A in patients with alopecia areata and its relationship to age. Int J Dermatol. 2016;55(8):869–74.

    Article  CAS  PubMed  Google Scholar 

  155. Elela MA, et al. B cell activating factor and T-helper 17 cells: possible synergistic culprits in the pathogenesis of alopecia areata. Arch Dermatol Res. 2016;308(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  156. Guttman-Yassky E, et al. Efficacy and safety of secukinumab treatment in adults with extensive alopecia areata. Arch Dermatol Res. 2018;310(8):607–14.

    Article  CAS  PubMed  Google Scholar 

  157. Chen W, et al. Apremilast ameliorates experimental arthritis via suppression of Th1 and Th17 cells and enhancement of CD4(+)Foxp3(+) regulatory T cells differentiation. Front Immunol. 2018;9:1662.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen Y, et al. Apremilast regulates the Teff/Treg balance to ameliorate uveitis via PI3K/AKT/FoxO1 signaling pathway. Front Immunol. 2020;11: 581673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Estébanez A, et al. Apremilast in refractory alopecia areata. Int J Trichology. 2019;11(5):213–5.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Taneja N, Gupta S. Apremilast is efficacious in refractory alopecia areata. J Dermatolog Treat. 2020;31(7):727–9.

    Article  CAS  PubMed  Google Scholar 

  162. Mikhaylov D, et al. A randomized placebo-controlled single-center pilot study of the safety and efficacy of apremilast in subjects with moderate-to-severe alopecia areata. Arch Dermatol Res. 2019;311(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  163. Crowley J, et al. Long-term safety and tolerability of apremilast in patients with psoriasis: Pooled safety analysis for ≥156 weeks from 2 phase 3, randomized, controlled trials (ESTEEM 1 and 2). J Am Acad Dermatol. 2017;77(2):310-317.e1.

    Article  CAS  PubMed  Google Scholar 

  164. Langley A, Beecker J. Management of common side effects of apremilast. J Cutan Med Surg. 2017;22(4):415–21.

    Article  PubMed  Google Scholar 

  165. Shiravand Y, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Weber JS, et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol. 2017;35(7):785–92.

    Article  CAS  PubMed  Google Scholar 

  167. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors. Am J Clin Dermatol. 2018;19(3):345–61.

    Article  PubMed  Google Scholar 

  168. Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  169. Belum VR, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Curnock AP, et al. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. JCI Insight. 2021;6(20):e152468

  171. Grebinoski S, Vignali DAA. Inhibitory receptor agonists: the future of autoimmune disease therapeutics? Curr Opin Immunol. 2020;67:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mulroy D. AnaptysBio announces positive Rosnilimab healthy volunteer phase 1 top-line data. [announcement] 2021 [cited 31 Oct 2022]. https://ir.anaptysbio.com/news-releases/news-release-details/anaptysbio-announces-positive-rosnilimab-healthy-volunteer-phase. Accessed 31 Oct 2022

  173. Ruderman EM, Pope RM. The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther. 2005; 7 Suppl 2:S21–5.

  174. Moreland L, Bate G, Kirkpatrick P. Abatacept. Nat Rev Drug Discov. 2006;5(3):185–6.

    Article  CAS  PubMed  Google Scholar 

  175. Sun J, et al. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol. 2008;17(10):793–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Carroll JM, et al. Gene array profiling and immunomodulation studies define a cell-mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J Invest Dermatol. 2002;119(2):392–402.

    Article  CAS  PubMed  Google Scholar 

  177. Mackay-Wiggan J, et al. An open-label study evaluating the efficacy of abatacept in alopecia areata. J Am Acad Dermatol. 2021;84(3):841–4.

    Article  PubMed  Google Scholar 

  178. Manimaran RP, et al. Therapeutic outcome of diphencyprone and its correlation with serum cytokine profile in alopecia areata. J Dermatolog Treat. 2022;33(1):324–8.

    Article  CAS  PubMed  Google Scholar 

  179. Ebrahim AA, et al. Serum interleukin-15 is a marker of alopecia areata severity. Int J Trichol. 2019;11(1):26–30.

    Article  Google Scholar 

  180. Equillium. Equillium announces initiation of phase 2 study of EQ101 a first-in-class multi-cytokine inhibitor of IL-2, IL-9 and IL-15 targeting alopecia areata. 2022 [cited 20 Apr 2023]. https://www.equilliumbio.com/investors/press-releases/news-details/2022/Equillium-Announces-Initiation-of-Phase-2-study-of-EQ101-A-First-in-Class-Multi-Cytokine-Inhibitor-of-IL-2-IL-9-and-IL-15-Targeting-Alopecia-Areata/default.aspx. Accessed 20 Apr 2023.

  181. Tiet P. Equillium announces presentation of data demonstrating biological importance of multi-cytokine inhibitors EQ101 and EQ102 at the La Jolla immunology conference. 2022 [cited 31 Oct 2022]. https://www.businesswire.com/news/home/20221026005422/en/. Accessed 31 Oct 2022.

  182. Equillium Announces initiation of phase 2 study of EQ101 A first-in-class multi-cytokine inhibitor of IL-2, IL-9 and IL-15 targeting alopecia areata. November 10, 2022 [cited 28 Nov 2022]. https://www.equilliumbio.com/investors/press-releases/news-details/2022/Equillium-Announces-Initiation-of-Phase-2-study-of-EQ101-A-First-in-Class-Multi-Cytokine-Inhibitor-of-IL-2-IL-9-and-IL-15-Targeting-Alopecia-Areata/default.aspx. Accessed 28 Nov 2022.

  183. Coronel-Pérez IM, Rodríguez-Rey EM, Camacho-Martínez FM. Latanoprost in the treatment of eyelash alopecia in alopecia areata universalis. J Eur Acad Dermatol Venereol. 2010;24(4):481–5.

    Article  PubMed  Google Scholar 

  184. Vila TO, Camacho Martinez FM. Bimatoprost in the treatment of eyelash universalis alopecia areata. Int J Trichol. 2010;2(2):86–8.

    Article  Google Scholar 

  185. Roseborough I, et al. Lack of efficacy of topical latanoprost and bimatoprost ophthalmic solutions in promoting eyelash growth in patients with alopecia areata. J Am Acad Dermatol. 2009;60(4):705–6.

    Article  PubMed  Google Scholar 

  186. Meah N, et al. The alopecia areata consensus of experts (ACE) study: results of an international expert opinion on treatments for alopecia areata. J Am Acad Dermatol. 2020;83(1):123–30.

    Article  PubMed  Google Scholar 

  187. Zorn E, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Castela E, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–51.

    Article  CAS  PubMed  Google Scholar 

  189. Le Duff F, et al. Low-dose IL-2 for treating moderate to severe alopecia areata: a 52-week multicenter prospective placebo-controlled study assessing its impact on T regulatory cell and NK cell populations. J Investig Dermatol. 2021;141(4):933-936.e6.

    Article  PubMed  Google Scholar 

  190. Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Appendage Disord. 2018;4(1):18–24.

    Article  PubMed  Google Scholar 

  191. Xu P, et al. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma. 2020;8:tkaa028.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sakata R, Reddi AH. Platelet-rich plasma modulates actions on articular cartilage lubrication and regeneration. Tissue Eng Part B Rev. 2016;22(5):408–19.

    Article  PubMed  Google Scholar 

  193. Kim DH, et al. Can platelet-rich plasma be used for skin rejuvenation? Evaluation of effects of platelet-rich plasma on human dermal fibroblast. Ann Dermatol. 2011;23(4):424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Trink A, et al. A randomized, double-blind, placebo- and active-controlled, half-head study to evaluate the effects of platelet-rich plasma on alopecia areata. Br J Dermatol. 2013;169(3):690–4.

    Article  CAS  PubMed  Google Scholar 

  195. van Baar HM, et al. Abnormal expression of Ki-67 antigen in hair follicle of alopecia areata. Acta Derm Venereol. 1992;72(3):161–4.

    Article  PubMed  Google Scholar 

  196. Greco J, Brandt R. The effects of autologus platelet rich plasma and various growth factors on non-transplanted miniaturized hair. In: Hair transplant forum international. 2009.

  197. Singh S. Role of platelet-rich plasma in chronic alopecia areata: our centre experience. Indian J Plast Surg. 2015;48(1):57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Donovan J. Successful treatment of corticosteroid-resistant ophiasis-type alopecia areata (AA) with platelet-rich plasma (PRP). JAAD Case Rep. 2015;1(5):305–7.

    Article  PubMed  PubMed Central  Google Scholar 

  199. El Taieb MA, et al. Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: a trichoscopic evaluation. Dermatol Ther. 2017;30(1).

  200. Meznerics FA, et al. Platelet-rich plasma in alopecia areata-a steroid-free treatment modality: a systematic review and meta-analysis of randomized clinical trials. Biomedicines. 2022;10(8):1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Alves R, Grimalt R. Randomized placebo-controlled, double-blind, half-head study to assess the efficacy of platelet-rich plasma on the treatment of androgenetic alopecia. Dermatol Surg. 2016;42(4):491–7.

    Article  CAS  PubMed  Google Scholar 

  202. Anitua E, et al. The effect of plasma rich in growth factors on pattern hair loss: a pilot study. Dermatol Surg. 2017;43(5):658–70.

    Article  CAS  PubMed  Google Scholar 

  203. Gentile P, et al. The effect of platelet-rich plasma in hair regrowth: a randomized placebo-controlled trial. Stem Cells Transl Med. 2015;4(11):1317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gkini M-A, et al. Study of platelet-rich plasma injections in the treatment of androgenetic alopecia through an one-year period. J Cutan Aesthet Surg. 2014;7(4):213.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kachhawa D, et al. A spilt head study of efficacy of placebo versus platelet-rich plasma injections in the treatment of androgenic alopecia. J Cutan Aesthet Surg. 2017;10(2):86.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kang JS, et al. The effect of CD34+ cell-containing autologous platelet-rich plasma injection on pattern hair loss: a preliminary study. J Eur Acad Dermatol Venereol. 2014;28(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  207. Khatu SS, et al. Platelet-rich plasma in androgenic alopecia: myth or an effective tool. J Cutan Aesthet Surg. 2014;7(2):107.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Singhal P, et al. Efficacy of platelet-rich plasma in treatment of androgenic alopecia. Asian J Transfusion Sci. 2015;9(2):159.

    Article  CAS  Google Scholar 

  209. Valente Duarte de Sousa IC, Tosti A. New investigational drugs for androgenetic alopecia. Expert Opin Investig Drugs. 2013;22(5):573–89.

    Article  CAS  PubMed  Google Scholar 

  210. Badran KW, Sand JP. Platelet-rich plasma for hair loss: review of methods and results. Facial Plast Surg Clin North Am. 2018;26(4):469–85.

    Article  PubMed  Google Scholar 

  211. Ragab SEM, et al. Platelet-rich plasma in alopecia areata: intradermal injection versus topical application with transepidermal delivery via either fractional carbon dioxide laser or microneedling. Acta Dermatovenerol Alp Pannonica Adriat. 2020;29(4):169–73.

    PubMed  Google Scholar 

  212. Cao W, et al. Plasmacytoid dendritic cell-specific receptor ILT7-Fc epsilonRI gamma inhibits Toll-like receptor-induced interferon production. J Exp Med. 2006;203(6):1399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Abou Rahal J, et al. Plasmacytoid dendritic cells in alopecia areata: missing link? J Eur Acad Dermatol Venereol. 2016;30(1):119–23.

    Article  CAS  PubMed  Google Scholar 

  214. Ito T, et al. Plasmacytoid dendritic cells as a possible key player to initiate alopecia areata in the C3H/HeJ mouse. Allergol Int. 2020;69(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  215. Chi H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci. 2011;32(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  216. Currò D, Pugliese D, Armuzzi A. Frontiers in drug research and development for inflammatory bowel disease. Front Pharmacol. 2017;8:400.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Safety and efficacy of oral etrasimod in adult participants with moderate-to-severe alopecia areata. 2022 [cited 2 Mar 2022]. https://ichgcp.net/clinical-trials-registry/NCT04556734. Accessed 2 Mar 2022.

  218. Mostaghimi A, et al. Economic burden and healthcare resource use of alopecia areata in an insured population in the USA. Dermatol Ther (Heidelb). 2022;12(4):1027–40.

    Article  PubMed  Google Scholar 

  219. Thompson HJ, Vavra T, Jabbari A. Factors associated with insurance coverage of tofacitinib for alopecia areata: a retrospective review from an academic institution. J Am Acad Dermatol. 2020;83(5):1509–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wyrwich KW, et al. Development of the Scalp Hair Assessment PRO™ measure for alopecia areata. Br J Dermatol. 2020;183(6):1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wyrwich KW, et al. Validation of the alopecia areata patient priority outcomes (AAPPO) questionnaire in adults and adolescents with alopecia areata. Dermatol Ther (Heidelb). 2022;12(1):149–66.

    Article  PubMed  Google Scholar 

  222. Xia, E., et al. An assessment of current clinician-reported and patient-reported outcome measures for alopecia areata: a scoping review. J Investig Dermatol. 2023.

  223. Asfour L, et al. Concurrent chronic alopecia areata and severe atopic dermatitis successfully treated with upadacitinib. Int J Dermatol. 2022;61(11):e416–7.

    Article  CAS  PubMed  Google Scholar 

  224. Gambardella A, et al. Dual efficacy of upadacitinib in 2 patients with concomitant severe atopic dermatitis and alopecia areata. Dermatitis. 2021;32(1s):e85–6.

    Article  PubMed  Google Scholar 

  225. Kołcz K, et al. Alopecia universalis in an adolescent successfully treated with upadacitinib—a case report and review of the literature on the use of JAK inhibitors in pediatric alopecia areata. Dermatol Ther (Heidelb). 2023;13(3):843–56.

    Article  PubMed  Google Scholar 

  226. Freire PCB, et al. Minoxidil for patchy alopecia areata: systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2019;33(9):1792–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Guttman-Yassky.

Ethics declarations

Funding

Not applicable.

Conflicts of interest

Emma Guttman-Yassky is an employee of Mount Sinai, has received research funds (grants paid to the institution) from AbbVie, Celgene, Eli Lilly, Janssen, Medimmune/Astra Zeneca, Novartis, Pfizer, Regeneron, Vitae, Glenmark, Galderma, Asana, Innovaderm, Dermira, UCB, and is also a consultant for Sanofi Aventis, Regeneron, Stiefel/GlaxoSmithKline, MedImmune, Celgene, Anacor, AnaptysBio, Dermira, Galderma, Glenmark, Novartis, Pfizer, Vitae, Leo Pharma, AbbVie, Eli Lilly, Kyowa, Mitsubishi Tanabe, Asana Biosciences, and Promius. Dante Dahabreh, Seungyeon Jung, Yael Renert-Yuval, Jonathan Bar, and Ester Del Duca declare that they have no conflicts of interest to disclose.

Ethics approval

Not applicable.

Patient consent to participate/publish

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

DD: first author, writer, editor, organization, and concept planning for all sections of review of the manuscript; developed Table 1 and Fig. 1. SJ: writer and editor, and contributed to 30% of the text; developed Table 2. YR-Y: editor for the paper, and cross-source checking. JB: editor for the paper, and cross-source checking; table design. EDD: editor for content, and concept check. EG-Y: editor and concept organization. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahabreh, D., Jung, S., Renert-Yuval, Y. et al. Alopecia Areata: Current Treatments and New Directions. Am J Clin Dermatol 24, 895–912 (2023). https://doi.org/10.1007/s40257-023-00808-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-023-00808-1

Navigation