Skip to main content

Advertisement

Log in

Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as a clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adlowitz DG, Barnard J, Biear JN, Cistrone C, Owen T, Wang W, Palanichamy A, Ezealah E, Campbell D, Wei C et al (2015) Expansion of activated peripheral blood memory B cells in rheumatoid arthritis, impact of b cell depletion therapy, and biomarkers of response. PLoS One 10(6):e0128269

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295

    Article  CAS  PubMed  Google Scholar 

  3. Avery DT, Ellyard JI, Mackay F, Corcoran LM, Hodgkin PD, Tangye SG (2005) Increased expression of CD27 on activated human memory B cells correlates with their commitment to the plasma cell lineage. J Immunol 174(7):4034–4042

    Article  CAS  PubMed  Google Scholar 

  4. Ayoglu B, Mitsios N, Kockum I, Khademi M, Zandian A, Sjoberg R, Forsstrom B, Bredenberg J, Lima Bomfim I, Holmgren E et al (2016) Anoctamin 2 identified as an autoimmune target in multiple sclerosis. Proc Natl Acad Sci USA 113(8):2188–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banki K, Colombo E, Sia F, Halladay D, Mattson DH, Tatum AH, Massa PT, Phillips PE, Perl A (1994) Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J Exp Med 180(5):1649–1663

    Article  CAS  PubMed  Google Scholar 

  6. Bankoti J, Apeltsin L, Hauser SL, Allen S, Albertolle ME, Witkowska HE, von Budingen HC (2014) In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol 75(2):266–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bar-Or A, Antel JP (2016) Central nervous system inflammation across the age span. Curr Opin Neurol 29(3):381–387

  8. Beltran E, Obermeier B, Moser M, Coret F, Simo-Castello M, Bosca I, Perez-Miralles F, Villar LM, Senel M, Tumani H et al (2014) Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain 137(Pt 10):2703–2714

    Article  PubMed  Google Scholar 

  9. Bennett JL, Haubold K, Ritchie AM, Edwards SJ, Burgoon M, Shearer AJ, Gilden DH, Owens GP (2008) CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. J Neuroimmunol 199(1–2):126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, Glogowska M, Case D, Antel JP, Owens GP et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66(5):617–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett JL, O’Connor KC, Bar-Or A, Zamvil SS, Hemmer B, Tedder TF, von Budingen HC, Stuve O, Yeaman MR, Smith TJ et al (2015) B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2(3):e104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blauth K, Soltys J, Matschulat A, Reiter CR, Ritchie A, Baird NL, Bennett JL, Owens GP (2015) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol 130(6):765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brandle SM, Obermeier B, Senel M, Bruder J, Mentele R, Khademi M, Olsson T, Tumani H, Kristoferitsch W, Lottspeich F et al (2016) Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci USA 113(28):7864–7869

    Article  PubMed  Google Scholar 

  14. Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE (1997) Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM + and CD5(-)/IgM + B cells. J Clin Invest 99(10):2488–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bronstein JM, Lallone RL, Seitz RS, Ellison GW, Myers LW (1999) A humoral response to oligodendrocyte-specific protein in MS: a potential molecular mimic. Neurology 53(1):154–161

    Article  CAS  PubMed  Google Scholar 

  16. Cameron EM, Spencer S, Lazarini J, Harp CT, Ward ES, Burgoon M, Owens GP, Racke MK, Bennett JL, Frohman EM et al (2009) Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis. J Neuroimmunol 213(1–2):123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casellas R, Shih TA, Kleinewietfeld M, Rakonjac J, Nemazee D, Rajewsky K, Nussenzweig MC (2001) Contribution of receptor editing to the antibody repertoire. Science 291(5508):1541–1544

    Article  CAS  PubMed  Google Scholar 

  18. Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J, Sommer N, Hartung HP, Hemmer B (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128(Pt 7):1667–1676

    Article  PubMed  Google Scholar 

  19. Chang EH, Volpe BT, Mackay M, Aranow C, Watson P, Kowal C, Storbeck J, Mattis P, Berlin R, Chen H et al (2015) Selective impairment of spatial cognition caused by autoantibodies to the N-methyl-d-aspartate receptor. EBioMedicine 2(7):755–764

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chihara N, Aranami T, Oki S, Matsuoka T, Nakamura M, Kishida H, Yokoyama K, Kuroiwa Y, Hattori N, Okamoto T et al (2013) Plasmablasts as migratory IgG-producing cells in the pathogenesis of neuromyelitis optica. PLoS One 8(12):e83036

    Article  PubMed  PubMed Central  Google Scholar 

  21. Colombo E, Banki K, Tatum AH, Daucher J, Ferrante P, Murray RS, Phillips PE, Perl A (1997) Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis. J Clin Invest 99(6):1238–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colombo M, Dono M, Gazzola P, Chiorazzi N, Mancardi G, Ferrarini M (2003) Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur J Immunol 33(12):3433–3438

    Article  CAS  PubMed  Google Scholar 

  23. Colombo M, Dono M, Gazzola P, Roncella S, Valetto A, Chiorazzi N, Mancardi GL, Ferrarini M (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164(5):2782–2789

    Article  CAS  PubMed  Google Scholar 

  24. Cristofanilli M, Rosenthal H, Cymring B, Gratch D, Pagano B, Xie B, Sadiq SA (2014) Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice. Exp Neurol 261:620–632

  25. Cross AH, Waubant E (2011) MS and the B cell controversy. Biochim Biophys Acta 1812(2):231–238

    Article  CAS  PubMed  Google Scholar 

  26. Disanto G, Morahan JM, Barnett MH, Giovannoni G, Ramagopalan SV (2012) The evidence for a role of B cells in multiple sclerosis. Neurology 78(11):823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eikelenboom MJ, Petzold A, Lazeron RH, Silber E, Sharief M, Thompson EJ, Barkhof F, Giovannoni G, Polman CH, Uitdehaag BM (2003) Multiple sclerosis: neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 60(2):219–223

    Article  CAS  PubMed  Google Scholar 

  28. Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H et al (2012) Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 135(Pt 6):1819–1833

    Article  PubMed  PubMed Central  Google Scholar 

  29. Endo T, Scott DD, Stewart SS, Kundu SK, Marcus DM (1984) Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. J Immunol 132(4):1793–1797

    CAS  PubMed  Google Scholar 

  30. Fairfax KA, Kallies A, Nutt SL, Tarlinton DM (2008) Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol 20(1):49–58

    Article  CAS  PubMed  Google Scholar 

  31. Fialova L, Bartos A, Svarcova J, Zimova D, Kotoucova J, Malbohan I (2013) Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J Neuroimmunol 262(1–2):113–120

    Article  CAS  PubMed  Google Scholar 

  32. Fink K (2012) Origin and function of circulating plasmablasts during acute viral infections. Front Immunol 3:78. doi:10.3389/fimmu.2012.00078

  33. Fraussen J, Claes N, de Bock L, Somers V (2014) Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev 13(11):1126–1137

    Article  CAS  PubMed  Google Scholar 

  34. Frolich D, Giesecke C, Mei HE, Reiter K, Daridon C, Lipsky PE, Dorner T (2010) Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J Immunol 185(5):3103–3110

    Article  PubMed  Google Scholar 

  35. Gauld SB, Dal Porto JM, Cambier JC (2002) B cell antigen receptor signaling: roles in cell development and disease. Science 296(5573):1641–1642

    Article  CAS  PubMed  Google Scholar 

  36. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (1999) Basic neurochemistry, molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia

    Google Scholar 

  37. Harp C, Lee J, Lambracht-Washington D, Cameron E, Olsen G, Frohman E, Racke M, Monson N (2007) Cerebrospinal fluid B cells from multiple sclerosis patients are subject to normal germinal center selection. J Neuroimmunol 183(1–2):189–199

    Article  CAS  PubMed  Google Scholar 

  38. Haubold K, Owens GP, Kaur P, Ritchie AM, Gilden DH, Bennett JL (2004) B-lymphocyte and plasma cell clonal expansion in monosymptomatic optic neuritis cerebrospinal fluid. Ann Neurol 56(1):97–107

    Article  CAS  PubMed  Google Scholar 

  39. Hauser SL, Chan JR, Oksenberg JR (2013) Multiple sclerosis: prospects and promise. Ann Neurol 74(3):317–327

    Article  CAS  PubMed  Google Scholar 

  40. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688

    Article  CAS  PubMed  Google Scholar 

  41. Heine G, Drozdenko G, Grun JR, Chang HD, Radbruch A, Worm M (2014) Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur J Immunol 44(6):1615–1621

    Article  CAS  PubMed  Google Scholar 

  42. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7(3):365–368

    Article  CAS  PubMed  Google Scholar 

  43. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 2: CD8 + T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15(3):317–331

    Article  CAS  PubMed  Google Scholar 

  44. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2015) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15(2):198–209

  45. Holman DW, Klein RS, Ransohoff RM (2011) The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812(2):220–230

    Article  CAS  PubMed  Google Scholar 

  46. Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B (2006) Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA 103(3):678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, Peles E, Buckley C, Lang B, Vincent A (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis. Morvan’s syndrome and acquired neuromyotonia. Brain 133(9):2734–2748

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jacobi AM, Mei H, Hoyer BF, Mumtaz IM, Thiele K, Radbruch A, Burmester GR, Hiepe F, Dorner T (2010) HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann Rheum Dis 69(1):305–308

    Article  CAS  PubMed  Google Scholar 

  49. Jang JY, Jeong JG, Jun HR, Lee SC, Kim JS, Kim YS, Kwon MH (2009) A nucleic acid-hydrolyzing antibody penetrates into cells via caveolae-mediated endocytosis, localizes in the cytosol and exhibits cytotoxicity. Cell Mol Life Sci 66(11–12):1985–1997

    Article  CAS  PubMed  Google Scholar 

  50. Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Tinbergen J et al (2011) Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378(9805):1779–1787

    Article  CAS  PubMed  Google Scholar 

  51. Kinnunen T, Chamberlain N, Morbach H, Cantaert T, Lynch M, Preston-Hurlburt P, Herold KC, Hafler DA, Ock C, Meffre E (2013) Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J Clin Invest 123(6):2737–2741

  52. Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, Diamond B, Volpe BT (2004) Cognition and immunity; antibody impairs memory. Immunity 21(2):179–188

    Article  CAS  PubMed  Google Scholar 

  53. Kowarik MC, Dzieciatkowska M, Wemlinger S, Ritchie AM, Hemmer B, Owens GP, Bennett JL (2015) The cerebrospinal fluid immunoglobulin transcriptome and proteome in neuromyelitis optica reveals central nervous system-specific B cell populations. J Neuroinflammation 12(19):1–8

  54. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E (2012) B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 8(11):613–623

    Article  CAS  PubMed  Google Scholar 

  55. Lee FE, Halliley JL, Walsh EE, Moscatiello AP, Kmush BL, Falsey AR, Randall TD, Kaminiski DA, Miller RK, Sanz I (2011) Circulating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effect. J Immunol 186(9):5514–5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD (2004) The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 18(1):1–11

    Article  PubMed  Google Scholar 

  57. Ligocki AJ, Rivas JR, Rounds WH, Guzman AA, Li M, Spadaro M, Lahey L, Chen D, Henson PM, Graves D et al (2015) A distinct class of antibodies may be an indicator of gray matter autoimmunity in early and established relapsing remitting multiple sclerosis patients. ASN Neuro 7(5):1–16

  58. Ligocki AJ, Rounds WH, Cameron EM, Harp CT, Frohman EM, Courtney AM, Vernino S, Cowell LG, Greenberg B, Monson NL (2013) Expansion of CD27high plasmablasts in transverse myelitis patients that utilize VH4 and JH6 genes and undergo extensive somatic hypermutation. Genes Immun 14(5):291–301

  59. Lim PL, Zouali M (2006) Pathogenic autoantibodies: emerging insights into tissue injury. Immunol Lett 103(1):17–26

    Article  CAS  PubMed  Google Scholar 

  60. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  PubMed  Google Scholar 

  62. Mathiesen T, von Holst H, Fredrikson S, Wirsen G, Hederstedt B, Norrby E, Sundqvist VA, Wahren B (1989) Total, anti-viral, and anti-myelin IgG subclass reactivity in inflammatory diseases of the central nervous system. J Neurol 236(4):238–242

    Article  CAS  PubMed  Google Scholar 

  63. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS (2008) Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol 172(3):799–808

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meffre E, Casellas R, Nussenzweig MC (2000) Antibody regulation of B cell development. Nat Immunol 1(5):379–385

    Article  CAS  PubMed  Google Scholar 

  65. Meffre E, Davis E, Schiff C, Cunningham-Rundles C, Ivashkiv LB, Staudt LM, Young JW, Nussenzweig MC (2000) Circulating human B cells that express surrogate light chains and edited receptors. Nat Immunol 1(3):207–213

    Article  CAS  PubMed  Google Scholar 

  66. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9(6):540–549

    Article  CAS  PubMed  Google Scholar 

  67. Monson NL, Brezinschek HP, Brezinschek RI, Mobley A, Vaughan GK, Frohman EM, Racke MK, Lipsky PE (2005) Receptor revision and atypical mutational characteristics in clonally expanded B cells from the cerebrospinal fluid of recently diagnosed multiple sclerosis patients. J Neuroimmunol 158(1–2):170–181

    Article  CAS  PubMed  Google Scholar 

  68. Morris-Downes MM, McCormack K, Baker D, Sivaprasad D, Natkunarajah J, Amor S (2002) Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte-specific glycoprotein (OSP) and 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in ABH and SJL mice. J Neuroimmunol 122(1–2):20–33

    Article  CAS  PubMed  Google Scholar 

  69. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3):160–171

    Article  CAS  PubMed  Google Scholar 

  70. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, Lipsky PE, Radbruch A, Dorner T (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165(10):5970–5979

    Article  CAS  PubMed  Google Scholar 

  71. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI (2005) Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol 12(5):392–398

    Article  CAS  PubMed  Google Scholar 

  72. Onoue H, Satoh JI, Ogawa M, Tabunoki H, Yamamura T (2007) Detection of anti-Nogo receptor autoantibody in the serum of multiple sclerosis and controls. Acta Neurol Scand 115(3):153–160

    Article  CAS  PubMed  Google Scholar 

  73. Owens GP, Bennett JL, Lassmann H, O’Connor KC, Ritchie AM, Shearer A, Lam C, Yu X, Birlea M, DuPree C et al (2009) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 65(6):639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Owens GP, Ritchie AM, Burgoon MP, Williamson RA, Corboy JR, Gilden DH (2003) Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J Immunol 171(5):2725–2733

    Article  CAS  PubMed  Google Scholar 

  75. Owens GP, Winges KM, Ritchie AM, Edwards S, Burgoon MP, Lehnhoff L, Nielsen K, Corboy J, Gilden DH, Bennett JL (2007) VH4 gene segments dominate the intrathecal humoral immune response in multiple sclerosis. J Immunol 179(9):6343–6351

    Article  CAS  PubMed  Google Scholar 

  76. Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M et al (2014) Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 6(248):248ra106

  77. Parratt JD, Prineas JW (2010) Neuromyelitis optica: a demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Mult Scler 16(10):1156–1172

    Article  PubMed  Google Scholar 

  78. Qin Y, Duquette P, Zhang Y, Olek M, Da RR, Richardson J, Antel JP, Talbot P, Cashman NR, Tourtellotte WW et al (2003) Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83(7):1081–1088

    Article  PubMed  Google Scholar 

  79. Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J (1998) Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102(5):1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Racanelli V, Prete M, Musaraj G, Dammacco F, Perosa F (2011) Autoantibodies to intracellular antigens: generation and pathogenetic role. Autoimmun Rev 10(8):503–508

    Article  CAS  PubMed  Google Scholar 

  81. Ratts RB, Karandikar NJ, Hussain RZ, Choy J, Northrop SC, Lovett-Racke AE, Racke MK (2006) Phenotypic characterization of autoreactive T cells in multiple sclerosis. J Neuroimmunol 178(1–2):100–110

    Article  CAS  PubMed  Google Scholar 

  82. Ritchie AM, Gilden DH, Williamson RA, Burgoon MP, Yu X, Helm K, Corboy JR, Owens GP (2004) Comparative analysis of the CD19 + and CD138 + cell antibody repertoires in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol 173(1):649–656

    Article  CAS  PubMed  Google Scholar 

  83. Rounds WH, Ligocki AJ, Levin MK, Greenberg BM, Bigwood DW, Eastman EM, Cowell LG, Monson NL (2014) The antibody genetics of multiple sclerosis: comparing next-generation sequencing to sanger sequencing. Front Neurol 5(166):1–8

  84. Rounds WH, Salinas EA, Wilks TB 2nd, Levin MK, Ligocki AJ, Ionete C, Pardo CA, Vernino S, Greenberg BM, Bigwood DW et al (2015) MSPrecise: a molecular diagnostic test for multiple sclerosis using next generation sequencing. Gene 572(2):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Selvaraj UM, Ortega SB, Hu R, Gilchrist R, Kong X, Partin A, Plautz EJ, Klein RS, Gidday JM, Stowe AM (2016) Preconditioning-induced CXCL12 upregulation minimizes leukocyte infiltration after stroke in ischemia-tolerant mice. J Cereb Blood Flow Metab. doi:10.1177/0271678X16639327

  86. Silber E, Semra YK, Gregson NA, Sharief MK (2002) Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology 58(9):1372–1381

    Article  CAS  PubMed  Google Scholar 

  87. Solomon DH, Kavanaugh AJ, Schur PH, American College of Rheumatology Ad Hoc Committee on Immunologic Testing G (2002) Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing. Arthritis Rheum 47(4):434–444

  88. Song YC, Sun GH, Lee TP, Huang JC, Yu CL, Chen CH, Tang SJ, Sun KH (2008) Arginines in the CDR of anti-dsDNA autoantibodies facilitate cell internalization via electrostatic interactions. Eur J Immunol 38(11):3178–3190

    Article  CAS  PubMed  Google Scholar 

  89. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, Rothhammer V, Chan A, Gold R, Berthele A et al (2012) Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 367(2):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stevens A, Weller M, Wietholter H (1992) CSF and serum ganglioside antibody patterns in MS. Acta Neurol Scand 86(5):485–489

    Article  CAS  PubMed  Google Scholar 

  91. Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, Wiland P, Szechinski J (2012) Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus 21(4):412–420

    Article  CAS  PubMed  Google Scholar 

  92. Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329(1–2):112–124

    Article  CAS  PubMed  Google Scholar 

  93. Trotter J (2005) NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases. J Neurol Sci 233(1–2):37–42

    Article  CAS  PubMed  Google Scholar 

  94. Vincent A, Buckley C, Schott JM, Baker I, Dewar BK, Detert N, Clover L, Parkinson A, Bien CG, Omer S et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127(Pt 3):701–712

    PubMed  Google Scholar 

  95. von Budingen HC, Gulati M, Kuenzle S, Fischer K, Rupprecht TA, Goebels N (2010) Clonally expanded plasma cells in the cerebrospinal fluid of patients with central nervous system autoimmune demyelination produce “oligoclonal bands”. J Neuroimmunol 218(1–2):134–139

    Article  Google Scholar 

  96. von Budingen HC, Harrer MD, Kuenzle S, Meier M, Goebels N (2008) Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies. Eur J Immunol 38(7):2014–2023

    Article  Google Scholar 

  97. von Budingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J, Cree BA, Gourraud PA, Schwartzburg A, Huerta G et al (2012) B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest 122(12):4533–4543

    Article  Google Scholar 

  98. Vu T, Myers LW, Ellison GW, Mendoza F, Bronstein JM (2001) T-cell responses to oligodendrocyte-specific protein in multiple sclerosis. J Neurosci Res 66(3):506–509

    Article  CAS  PubMed  Google Scholar 

  99. Waldman M, Madaio MP (2005) Pathogenic autoantibodies in lupus nephritis. Lupus 14(1):19–24

    Article  CAS  PubMed  Google Scholar 

  100. Wang LD, Clark MR (2003) B-cell antigen-receptor signalling in lymphocyte development. Immunology 110(4):411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377

    Article  CAS  PubMed  Google Scholar 

  102. Willis SN, Stathopoulos P, Chastre A, Compton SD, Hafler DA, O’Connor KC (2015) Investigating the antigen specificity of multiple sclerosis central nervous system-derived immunoglobulins. Front Immunol 6(600)

  103. Winger RC, Zamvil SS (2016) Antibodies in multiple sclerosis oligoclonal bands target debris. Proc Natl Acad Sci USA 113(28):7696–7698

    Article  CAS  PubMed  Google Scholar 

  104. Winges KM, Gilden DH, Bennett JL, Yu X, Ritchie AM, Owens GP (2007) Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J Neuroimmunol 192(1–2):226–234

    Article  CAS  PubMed  Google Scholar 

  105. Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI et al (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208(1):181–193

  106. Yanase K, Smith RM, Puccetti A, Jarett L, Madaio MP (1997) Receptor-mediated cellular entry of nuclear localizing anti-DNA antibodies via myosin 1. J Clin Invest 100(1):25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zar JH (2010) Biostatistical analysis. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  108. Zekeridou A, Lennon VA (2015) Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2(4):e110

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang J, Jacobi AM, Wang T, Berlin R, Volpe BT, Diamond B (2009) Polyreactive autoantibodies in systemic lupus erythematosus have pathogenic potential. J Autoimmun 33(3–4):270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and healthy donors who gave samples for this study. This project was funded by the UT Southwestern CONQUER program and a grant from the National MS Society. Angela Mobley assisted with flow cytometry and sorting and Genevieve Konopka provided the SH-Sy5y cells. Betty Diamond at the Hofstra Northwell School of Medicine Department of Molecular Medicine provided the lupus control antibodies. We also thank E. Sally Ward at Texas A&M University for helpful discussion of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Monson.

Ethics declarations

Conflict of interest

Nancy Monson reports patent US 8,394,583 B2 on MSPrecise™, a diagnostic tool for predicting conversion to MS.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas, J.R., Ireland, S.J., Chkheidze, R. et al. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol 133, 43–60 (2017). https://doi.org/10.1007/s00401-016-1627-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1627-0

Keywords

Navigation