Skip to main content
Log in

Prediction of steady-state viscous and elastic properties of polyolefin melts in shear and elongation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The linear and nonlinear steady-state viscosities and elastic compliances were measured in shear and elongational flows for two low-density polyethylenes, a linear polypropylene, and two metallocene catalyzed polyethylenes (one linear and one long-chain branched) by Wolff et al. (Rheol Acta 49:95–103, 2010) and Resch (dissertation, 2010). Comprehensive data of this type are rarely found in the literature, and comprehensive modeling of both viscous and elastic effects is even rarer. In this contribution, the reliability of a modeling approach proposed by Laun (J Rheol 30(3):459–501, 1986) and based on the damping function concept is tested. The strain hardening seen for the long-chain branched polymers and its absence in the case of the linear polymer, the stronger decrease of the tensile compliance in comparison to the shear compliance with increasing stress, as well as the extended linear-viscoelastic regime of the shear viscosity in contrast to the shear compliance are correctly modeled. While the modeling of the nonlinear response in shear can be achieved with only one material parameter for most of the polymers considered here, the nonlinear modeling in elongation is achieved with two parameters. The same parameter values are shown to describe viscous as well as elastic properties of the melts, and thus the relations of Laun can be used to test the consistency of viscosity and compliance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen X, Stadler FJ, Münstedt H, Larson RG (2010) Method for obtaining tube model parameters for commercial ethane/α-olefin copolymers. J Rheol 54(2):393–406.

    Article  CAS  Google Scholar 

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers from structure to flow behavior and back again. Hanser, Germany

    Google Scholar 

  • Franck A, Meissner J (1984) The influence of blending polystyrenes of narrow molecular weight distribution on melt creep flow and creep recovery in elongation. Rheol Acta 23:117–123

    Article  CAS  Google Scholar 

  • Gabriel C, Kaschta J (1998) Comparison of different shear rheometers with regard to creep and creep recovery measurements. Rheol Acta 37:358–364

    Article  CAS  Google Scholar 

  • Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear. Rheol Acta 37:7–20

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (1999) Creep recovery behaviour of metallocene linear low-density polyethylenes. Rheol Acta 38:393–403

    Article  CAS  Google Scholar 

  • He C, Wood-Adams P, Dealy JM (2004) Broad frequency range characterization of molten polymers. J Rheol 48(4):711–724

    Article  CAS  Google Scholar 

  • Karam HJ, Bellinger JC (1964) Tensile creep of polystyrene at elevated temperatures. Part I. Trans Soc Rheol 8:61–72

    Article  Google Scholar 

  • Kaschta J, Schwarzl FR (1994a) Calculation of discrete retardation spectra from creep data—I. Method Rheol Acta 33(6):517–529

    Article  CAS  Google Scholar 

  • Kaschta J, Schwarzl FR (1994b) Calculation of discrete retardation spectra from creep data—II. Analysis of measured creep curves. Rheol Acta 33(6):530–541

    Article  CAS  Google Scholar 

  • Kessner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53(4):1001–1016

    Article  CAS  Google Scholar 

  • Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757

    Article  CAS  Google Scholar 

  • Kurzbeck S, Oster F, Münstedt H (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43(2):359–374

    Article  CAS  Google Scholar 

  • Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17:1–15

    Article  CAS  Google Scholar 

  • Laun MH (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30(3):459–501

    Article  CAS  Google Scholar 

  • Laun HM, Meissner J (1980) A sandwich-type creep rheometer for the measurement of rheological properties of polymer melts at low shear stresses. Rheol Acta 19:60–67

    Article  CAS  Google Scholar 

  • Laun HM, Münstedt H (1976) Comparison of the elongational behaviour of a polyethylene melt at constant stress and constant strain rate. Rheol Acta 15:517–524

    Article  CAS  Google Scholar 

  • Laun HM, Münstedt H (1978) Elongational behaviour of a low density polyethylene melt. I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state. Comparison with shear data. Influence of interfacial tension. Rheol Acta 17:415–425

    Article  CAS  Google Scholar 

  • Leblans PJR, Sampers J, Booij HC (1985) Rheological properties of some polyolefine melts in transient uniaxial elongational flow, described with a special type of constitutive equation. J Non-Newtonian Fluid Mech 19:185–207

    Article  CAS  Google Scholar 

  • Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, García-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35:3066–3075

    Article  CAS  Google Scholar 

  • Malkin AY, Isayev AI (2006) Rheology. Concepts, methods and applications. ChemTec Publisching, Toronto

    Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110.

    Article  CAS  Google Scholar 

  • Meissner J (1972) Development of a universal extensional rheometer for the uniaxial extension of polymer melts. Trans Soc Rheol 16(3):405–420

    Article  CAS  Google Scholar 

  • Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088

    Article  Google Scholar 

  • Münstedt H, Laun HM (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20(3):211–221

    Article  Google Scholar 

  • Nemoto N (1970) Viscoelastic properties of narrow-distribution polymers II. Tensile creep studies of polystyrene. Polym J 1(4):485–492

    Article  CAS  Google Scholar 

  • Patham B, Jayaraman K (2005) Creep recovery of random ethylene-octene polymer melts with varying comonomer content. J Rheol 49(5):989–999

    Article  CAS  Google Scholar 

  • Resch JA (2010) Elastic and viscous properties of polyolefin melts with different molecular structures investigated in shear and elongation. Dissertation, Universität Erlangen-Nürnberg

  • Resch JA, Stadler FJ, Kaschta J, Münstedt H (2009) Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 42:5676–5683

    Article  CAS  Google Scholar 

  • Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner MH (2009) The damping function in rheology. Rheol Acta 48:245–284

    Article  Google Scholar 

  • Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49(3):585–606

    Article  CAS  Google Scholar 

  • Simhambhatla M, Leonov AI (1995) On the rheological modelling of viscoelastic polymer liquids with stable constitutive equations. Rheol Acta 34:259–273

    Article  CAS  Google Scholar 

  • Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Forstner R (2004) Extensional rheometer for creep flow at high tensile stress. Part I. Description and validation. J Rheol 48(3):611–629

    Article  CAS  Google Scholar 

  • Termonia Y (1996) A creep compliance simulation study of the viscosity entangled polymer melts. Macromolecules 29:2025–2028

    Article  CAS  Google Scholar 

  • Vinogradov GV, Fikhman VD, Radushkevich BV (1972). Uniaxial extension of polystyrene at true constant stress. Rheol Acta 11:286–291

    Article  CAS  Google Scholar 

  • Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15:136–142

    Article  CAS  Google Scholar 

  • Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4:39–55

    Article  CAS  Google Scholar 

  • Wagner MH (1979) Elongational behaviour of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments. Rheol Acta 18(6):681–692

    Article  CAS  Google Scholar 

  • Wagner MH, Stephenson SE (1979) The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions. J Rheol 23(4):489–504

    Article  CAS  Google Scholar 

  • Wagner MH, Meissner J (1980) Network disentanglement and time-dependent flow behaviour of polymer melts. Makromol Chem 181:1533–1550

    Article  CAS  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  CAS  Google Scholar 

  • Watanabe H, Inoue T (2004) Creep behavior of combined Rouse-reptation mechanism. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 32(3):113–116

    Article  Google Scholar 

  • Winter HH, Mours M (2007) Iris Developments. http://rheology.tripod.com/

  • Wolff F, Resch JA, Kaschta J, Münstedt H (2010) Comparison of viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 49:95–103

    Article  CAS  Google Scholar 

  • Yasuda S, Yamamoto R (2010) Multiscale modelling and simulation for polymer melt flows between parallel plates. Phys Rev E 81:036308

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the German Science Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Hugo Rolón-Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolón-Garrido, V.H., Resch, J.A., Wolff, F. et al. Prediction of steady-state viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 50, 645–653 (2011). https://doi.org/10.1007/s00397-011-0546-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0546-1

Keywords

Navigation